Files
c-relay/node_modules/@scure/bip32/node_modules/@noble/curves/ed448.js
2025-10-05 14:35:09 -04:00

219 lines
12 KiB
JavaScript
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.encodeToCurve = exports.hashToCurve = exports.edwardsToMontgomery = exports.edwardsToMontgomeryPub = exports.x448 = exports.ed448ph = exports.ed448 = void 0;
/*! noble-curves - MIT License (c) 2022 Paul Miller (paulmillr.com) */
const sha3_1 = require("@noble/hashes/sha3");
const utils_1 = require("@noble/hashes/utils");
const edwards_js_1 = require("./abstract/edwards.js");
const modular_js_1 = require("./abstract/modular.js");
const montgomery_js_1 = require("./abstract/montgomery.js");
const hash_to_curve_js_1 = require("./abstract/hash-to-curve.js");
/**
* Edwards448 (not Ed448-Goldilocks) curve with following addons:
* * X448 ECDH
* Conforms to RFC 8032 https://www.rfc-editor.org/rfc/rfc8032.html#section-5.2
*/
const shake256_114 = (0, utils_1.wrapConstructor)(() => sha3_1.shake256.create({ dkLen: 114 }));
const shake256_64 = (0, utils_1.wrapConstructor)(() => sha3_1.shake256.create({ dkLen: 64 }));
const ed448P = BigInt('726838724295606890549323807888004534353641360687318060281490199180612328166730772686396383698676545930088884461843637361053498018365439');
// powPminus3div4 calculates z = x^k mod p, where k = (p-3)/4.
// Used for efficient square root calculation.
// ((P-3)/4).toString(2) would produce bits [223x 1, 0, 222x 1]
function ed448_pow_Pminus3div4(x) {
const P = ed448P;
// prettier-ignore
const _1n = BigInt(1), _2n = BigInt(2), _3n = BigInt(3), _11n = BigInt(11);
// prettier-ignore
const _22n = BigInt(22), _44n = BigInt(44), _88n = BigInt(88), _223n = BigInt(223);
const b2 = (x * x * x) % P;
const b3 = (b2 * b2 * x) % P;
const b6 = ((0, modular_js_1.pow2)(b3, _3n, P) * b3) % P;
const b9 = ((0, modular_js_1.pow2)(b6, _3n, P) * b3) % P;
const b11 = ((0, modular_js_1.pow2)(b9, _2n, P) * b2) % P;
const b22 = ((0, modular_js_1.pow2)(b11, _11n, P) * b11) % P;
const b44 = ((0, modular_js_1.pow2)(b22, _22n, P) * b22) % P;
const b88 = ((0, modular_js_1.pow2)(b44, _44n, P) * b44) % P;
const b176 = ((0, modular_js_1.pow2)(b88, _88n, P) * b88) % P;
const b220 = ((0, modular_js_1.pow2)(b176, _44n, P) * b44) % P;
const b222 = ((0, modular_js_1.pow2)(b220, _2n, P) * b2) % P;
const b223 = ((0, modular_js_1.pow2)(b222, _1n, P) * x) % P;
return ((0, modular_js_1.pow2)(b223, _223n, P) * b222) % P;
}
function adjustScalarBytes(bytes) {
// Section 5: Likewise, for X448, set the two least significant bits of the first byte to 0, and the most
// significant bit of the last byte to 1.
bytes[0] &= 252; // 0b11111100
// and the most significant bit of the last byte to 1.
bytes[55] |= 128; // 0b10000000
// NOTE: is is NOOP for 56 bytes scalars (X25519/X448)
bytes[56] = 0; // Byte outside of group (456 buts vs 448 bits)
return bytes;
}
const Fp = (0, modular_js_1.Field)(ed448P, 456, true);
const _4n = BigInt(4);
const ED448_DEF = {
// Param: a
a: BigInt(1),
// -39081. Negative number is P - number
d: BigInt('726838724295606890549323807888004534353641360687318060281490199180612328166730772686396383698676545930088884461843637361053498018326358'),
// Finite field 𝔽p over which we'll do calculations; 2n**448n - 2n**224n - 1n
Fp,
// Subgroup order: how many points curve has;
// 2n**446n - 13818066809895115352007386748515426880336692474882178609894547503885n
n: BigInt('181709681073901722637330951972001133588410340171829515070372549795146003961539585716195755291692375963310293709091662304773755859649779'),
nBitLength: 456,
// Cofactor
h: BigInt(4),
// Base point (x, y) aka generator point
Gx: BigInt('224580040295924300187604334099896036246789641632564134246125461686950415467406032909029192869357953282578032075146446173674602635247710'),
Gy: BigInt('298819210078481492676017930443930673437544040154080242095928241372331506189835876003536878655418784733982303233503462500531545062832660'),
// SHAKE256(dom4(phflag,context)||x, 114)
hash: shake256_114,
randomBytes: utils_1.randomBytes,
adjustScalarBytes,
// dom4
domain: (data, ctx, phflag) => {
if (ctx.length > 255)
throw new Error(`Context is too big: ${ctx.length}`);
return (0, utils_1.concatBytes)((0, utils_1.utf8ToBytes)('SigEd448'), new Uint8Array([phflag ? 1 : 0, ctx.length]), ctx, data);
},
// Constant-time ratio of u to v. Allows to combine inversion and square root u/√v.
// Uses algo from RFC8032 5.1.3.
uvRatio: (u, v) => {
const P = ed448P;
// https://datatracker.ietf.org/doc/html/rfc8032#section-5.2.3
// To compute the square root of (u/v), the first step is to compute the
// candidate root x = (u/v)^((p+1)/4). This can be done using the
// following trick, to use a single modular powering for both the
// inversion of v and the square root:
// x = (u/v)^((p+1)/4) = u³v(u⁵v³)^((p-3)/4) (mod p)
const u2v = (0, modular_js_1.mod)(u * u * v, P); // u²v
const u3v = (0, modular_js_1.mod)(u2v * u, P); // u³v
const u5v3 = (0, modular_js_1.mod)(u3v * u2v * v, P); // u⁵v³
const root = ed448_pow_Pminus3div4(u5v3);
const x = (0, modular_js_1.mod)(u3v * root, P);
// Verify that root is exists
const x2 = (0, modular_js_1.mod)(x * x, P); // x²
// If vx² = u, the recovered x-coordinate is x. Otherwise, no
// square root exists, and the decoding fails.
return { isValid: (0, modular_js_1.mod)(x2 * v, P) === u, value: x };
},
};
exports.ed448 = (0, edwards_js_1.twistedEdwards)(ED448_DEF);
// NOTE: there is no ed448ctx, since ed448 supports ctx by default
exports.ed448ph = (0, edwards_js_1.twistedEdwards)({ ...ED448_DEF, prehash: shake256_64 });
exports.x448 = (() => (0, montgomery_js_1.montgomery)({
a: BigInt(156326),
montgomeryBits: 448,
nByteLength: 57,
P: ed448P,
Gu: BigInt(5),
powPminus2: (x) => {
const P = ed448P;
const Pminus3div4 = ed448_pow_Pminus3div4(x);
const Pminus3 = (0, modular_js_1.pow2)(Pminus3div4, BigInt(2), P);
return (0, modular_js_1.mod)(Pminus3 * x, P); // Pminus3 * x = Pminus2
},
adjustScalarBytes,
randomBytes: utils_1.randomBytes,
}))();
/**
* Converts edwards448 public key to x448 public key. Uses formula:
* * `(u, v) = ((y-1)/(y+1), sqrt(156324)*u/x)`
* * `(x, y) = (sqrt(156324)*u/v, (1+u)/(1-u))`
* @example
* const aPub = ed448.getPublicKey(utils.randomPrivateKey());
* x448.getSharedSecret(edwardsToMontgomery(aPub), edwardsToMontgomery(someonesPub))
*/
function edwardsToMontgomeryPub(edwardsPub) {
const { y } = exports.ed448.ExtendedPoint.fromHex(edwardsPub);
const _1n = BigInt(1);
return Fp.toBytes(Fp.create((y - _1n) * Fp.inv(y + _1n)));
}
exports.edwardsToMontgomeryPub = edwardsToMontgomeryPub;
exports.edwardsToMontgomery = edwardsToMontgomeryPub; // deprecated
// Hash To Curve Elligator2 Map
const ELL2_C1 = (Fp.ORDER - BigInt(3)) / BigInt(4); // 1. c1 = (q - 3) / 4 # Integer arithmetic
const ELL2_J = BigInt(156326);
function map_to_curve_elligator2_curve448(u) {
let tv1 = Fp.sqr(u); // 1. tv1 = u^2
let e1 = Fp.eql(tv1, Fp.ONE); // 2. e1 = tv1 == 1
tv1 = Fp.cmov(tv1, Fp.ZERO, e1); // 3. tv1 = CMOV(tv1, 0, e1) # If Z * u^2 == -1, set tv1 = 0
let xd = Fp.sub(Fp.ONE, tv1); // 4. xd = 1 - tv1
let x1n = Fp.neg(ELL2_J); // 5. x1n = -J
let tv2 = Fp.sqr(xd); // 6. tv2 = xd^2
let gxd = Fp.mul(tv2, xd); // 7. gxd = tv2 * xd # gxd = xd^3
let gx1 = Fp.mul(tv1, Fp.neg(ELL2_J)); // 8. gx1 = -J * tv1 # x1n + J * xd
gx1 = Fp.mul(gx1, x1n); // 9. gx1 = gx1 * x1n # x1n^2 + J * x1n * xd
gx1 = Fp.add(gx1, tv2); // 10. gx1 = gx1 + tv2 # x1n^2 + J * x1n * xd + xd^2
gx1 = Fp.mul(gx1, x1n); // 11. gx1 = gx1 * x1n # x1n^3 + J * x1n^2 * xd + x1n * xd^2
let tv3 = Fp.sqr(gxd); // 12. tv3 = gxd^2
tv2 = Fp.mul(gx1, gxd); // 13. tv2 = gx1 * gxd # gx1 * gxd
tv3 = Fp.mul(tv3, tv2); // 14. tv3 = tv3 * tv2 # gx1 * gxd^3
let y1 = Fp.pow(tv3, ELL2_C1); // 15. y1 = tv3^c1 # (gx1 * gxd^3)^((p - 3) / 4)
y1 = Fp.mul(y1, tv2); // 16. y1 = y1 * tv2 # gx1 * gxd * (gx1 * gxd^3)^((p - 3) / 4)
let x2n = Fp.mul(x1n, Fp.neg(tv1)); // 17. x2n = -tv1 * x1n # x2 = x2n / xd = -1 * u^2 * x1n / xd
let y2 = Fp.mul(y1, u); // 18. y2 = y1 * u
y2 = Fp.cmov(y2, Fp.ZERO, e1); // 19. y2 = CMOV(y2, 0, e1)
tv2 = Fp.sqr(y1); // 20. tv2 = y1^2
tv2 = Fp.mul(tv2, gxd); // 21. tv2 = tv2 * gxd
let e2 = Fp.eql(tv2, gx1); // 22. e2 = tv2 == gx1
let xn = Fp.cmov(x2n, x1n, e2); // 23. xn = CMOV(x2n, x1n, e2) # If e2, x = x1, else x = x2
let y = Fp.cmov(y2, y1, e2); // 24. y = CMOV(y2, y1, e2) # If e2, y = y1, else y = y2
let e3 = Fp.isOdd(y); // 25. e3 = sgn0(y) == 1 # Fix sign of y
y = Fp.cmov(y, Fp.neg(y), e2 !== e3); // 26. y = CMOV(y, -y, e2 XOR e3)
return { xn, xd, yn: y, yd: Fp.ONE }; // 27. return (xn, xd, y, 1)
}
function map_to_curve_elligator2_edwards448(u) {
let { xn, xd, yn, yd } = map_to_curve_elligator2_curve448(u); // 1. (xn, xd, yn, yd) = map_to_curve_elligator2_curve448(u)
let xn2 = Fp.sqr(xn); // 2. xn2 = xn^2
let xd2 = Fp.sqr(xd); // 3. xd2 = xd^2
let xd4 = Fp.sqr(xd2); // 4. xd4 = xd2^2
let yn2 = Fp.sqr(yn); // 5. yn2 = yn^2
let yd2 = Fp.sqr(yd); // 6. yd2 = yd^2
let xEn = Fp.sub(xn2, xd2); // 7. xEn = xn2 - xd2
let tv2 = Fp.sub(xEn, xd2); // 8. tv2 = xEn - xd2
xEn = Fp.mul(xEn, xd2); // 9. xEn = xEn * xd2
xEn = Fp.mul(xEn, yd); // 10. xEn = xEn * yd
xEn = Fp.mul(xEn, yn); // 11. xEn = xEn * yn
xEn = Fp.mul(xEn, _4n); // 12. xEn = xEn * 4
tv2 = Fp.mul(tv2, xn2); // 13. tv2 = tv2 * xn2
tv2 = Fp.mul(tv2, yd2); // 14. tv2 = tv2 * yd2
let tv3 = Fp.mul(yn2, _4n); // 15. tv3 = 4 * yn2
let tv1 = Fp.add(tv3, yd2); // 16. tv1 = tv3 + yd2
tv1 = Fp.mul(tv1, xd4); // 17. tv1 = tv1 * xd4
let xEd = Fp.add(tv1, tv2); // 18. xEd = tv1 + tv2
tv2 = Fp.mul(tv2, xn); // 19. tv2 = tv2 * xn
let tv4 = Fp.mul(xn, xd4); // 20. tv4 = xn * xd4
let yEn = Fp.sub(tv3, yd2); // 21. yEn = tv3 - yd2
yEn = Fp.mul(yEn, tv4); // 22. yEn = yEn * tv4
yEn = Fp.sub(yEn, tv2); // 23. yEn = yEn - tv2
tv1 = Fp.add(xn2, xd2); // 24. tv1 = xn2 + xd2
tv1 = Fp.mul(tv1, xd2); // 25. tv1 = tv1 * xd2
tv1 = Fp.mul(tv1, xd); // 26. tv1 = tv1 * xd
tv1 = Fp.mul(tv1, yn2); // 27. tv1 = tv1 * yn2
tv1 = Fp.mul(tv1, BigInt(-2)); // 28. tv1 = -2 * tv1
let yEd = Fp.add(tv2, tv1); // 29. yEd = tv2 + tv1
tv4 = Fp.mul(tv4, yd2); // 30. tv4 = tv4 * yd2
yEd = Fp.add(yEd, tv4); // 31. yEd = yEd + tv4
tv1 = Fp.mul(xEd, yEd); // 32. tv1 = xEd * yEd
let e = Fp.eql(tv1, Fp.ZERO); // 33. e = tv1 == 0
xEn = Fp.cmov(xEn, Fp.ZERO, e); // 34. xEn = CMOV(xEn, 0, e)
xEd = Fp.cmov(xEd, Fp.ONE, e); // 35. xEd = CMOV(xEd, 1, e)
yEn = Fp.cmov(yEn, Fp.ONE, e); // 36. yEn = CMOV(yEn, 1, e)
yEd = Fp.cmov(yEd, Fp.ONE, e); // 37. yEd = CMOV(yEd, 1, e)
const inv = Fp.invertBatch([xEd, yEd]); // batch division
return { x: Fp.mul(xEn, inv[0]), y: Fp.mul(yEn, inv[1]) }; // 38. return (xEn, xEd, yEn, yEd)
}
const htf = /* @__PURE__ */ (() => (0, hash_to_curve_js_1.createHasher)(exports.ed448.ExtendedPoint, (scalars) => map_to_curve_elligator2_edwards448(scalars[0]), {
DST: 'edwards448_XOF:SHAKE256_ELL2_RO_',
encodeDST: 'edwards448_XOF:SHAKE256_ELL2_NU_',
p: Fp.ORDER,
m: 1,
k: 224,
expand: 'xof',
hash: sha3_1.shake256,
}))();
exports.hashToCurve = (() => htf.hashToCurve)();
exports.encodeToCurve = (() => htf.encodeToCurve)();
//# sourceMappingURL=ed448.js.map