Compare commits

..

29 Commits

Author SHA1 Message Date
a5a1bd92c4 Version v0.3.23 - Reorganized project structure - all sources in src/, builds in build/ 2025-12-18 08:54:57 -04:00
3ff91e7681 Version v0.3.22 - Fix delete error 2025-12-18 08:45:16 -04:00
05f5d6ca4f Version v0.3.21 - Fixing errors with adding entropy to file 2025-12-18 08:34:52 -04:00
33b34bf5a5 Reupload 2025-10-09 10:45:04 -04:00
9d91ec912a Version v0.3.20 - . 2025-10-05 10:30:26 -04:00
7e431d98e9 Version v0.3.19 - Completed modularization project 2025-10-05 08:59:31 -04:00
90ffb25a2b Version v0.3.18 - Refactoring complete 2025-10-05 08:51:24 -04:00
79e43877a2 Version v0.3.17 - Refactored to smaller files to help agents out 2025-10-04 18:59:31 -04:00
abe87e865b Version v0.3.16 - "Adding entropy sources" 2025-10-04 07:21:02 -04:00
f87b2dbd8f Version v0.3.15 - Change temp pad location to final destination for the pad 2025-09-27 10:03:20 -04:00
1582c88be5 Version v0.3.14 - . 2025-09-27 09:31:23 -04:00
2ce3e823c5 Version v0.3.13 - Working on pretty 2025-09-24 10:49:13 -04:00
4983edaaae Version v0.3.12 - Making things pretty 2025-09-23 11:30:50 -04:00
66c6e3eea5 Version v0.3.11 - Add delete option, and TUI improvements 2025-09-23 10:39:17 -04:00
b058911fb8 Version v0.3.10 - fix truerng 2025-09-22 13:13:30 -04:00
a0ce6f3253 Version v0.3.9 - fix truerng 2025-09-22 13:04:06 -04:00
5e1de92454 Version v0.3.8 - Decided against adding USB functionality 2025-09-22 12:53:36 -04:00
55cf7b1937 true rng 2025-09-21 15:55:06 -04:00
3d990091eb Latest 2025-09-04 06:14:51 -04:00
232846e7ce Version v0.3.7 - "latest" 2025-09-04 06:14:18 -04:00
860ec08d4f Version v0.3.6 - "testing build.sh" 2025-09-01 15:30:08 -04:00
60276f5c97 Version v0.3.5 - "test build" 2025-09-01 15:25:45 -04:00
8616e78547 Version v0.3.4 - Checking build.sh 2025-09-01 15:25:06 -04:00
8327ee125b Version v0.3.3 - testing build.sh 2025-09-01 15:20:30 -04:00
5dadd948e6 Version v0.3.2 - Testing build script 2025-09-01 15:11:17 -04:00
02044f1054 Cleanup 2025-09-01 13:54:08 -04:00
194bd5fea5 Version v0.2.110 - Clean up functionality 2025-09-01 10:14:57 -04:00
eb126bb663 Version v0.2.109 - Simplify command line mode 2025-09-01 07:11:51 -04:00
a4a4c0d8b2 Version v0.2.108 - Fixed piping issues 2025-08-31 16:43:04 -04:00
35 changed files with 7615 additions and 4720 deletions

24
.gitignore vendored
View File

@@ -1,6 +1,26 @@
otp
# Build artifacts
build/
*.o
src/*.o
# Runtime directories
pads/
files/
# Personal files
Gemini.md
TropicOfCancer-HenryMiller.txt
.gitea_token
true_rng/
Trash/
# Auto-generated files (none currently)
# Test binaries
debug
test_swiftrng
test_swiftrng_debug
test_swiftrng_detailed
test_truerng
# Temporary files
*.pad
*.state

1
.rooignore Normal file
View File

@@ -0,0 +1 @@
otp copy.c

46
HARDWARE_RNG_STATUS.md Normal file
View File

@@ -0,0 +1,46 @@
# Hardware RNG Implementation Status
## Overview
The OTP cipher application now includes comprehensive hardware Random Number Generator (RNG) device support with automatic detection, device identification, and graceful handling of different device types.
## Supported Devices
### ✅ Fully Supported (TrueRNG Family)
- **TrueRNG Original** (VID: 04d8, PID: f5fe)
- **TrueRNG Pro** (VID: 04d8, PID: 0aa0)
- **TrueRNG Pro V2** (VID: 04d8, PID: ebb5)
These devices work via serial port communication and are fully integrated into the entropy collection system.
### ⚠️ Detected but Not Supported (SwiftRNG Family)
- **SwiftRNG** (VID: 1fc9, PID: 8111)
SwiftRNG devices are detected and identified but cannot be used via serial port communication. They require the official SwiftRNG API with libusb-1.0 integration.
## Implementation Features
### Device Detection
- **Automatic scanning** of `/dev/ttyUSB*` and `/dev/ttyACM*` devices
- **VID/PID identification** via sysfs to distinguish device types
- **Multi-device support** with interactive selection menus
- **Real-time status indicators** showing device availability
### Device Communication
- **Optimized serial port configuration** for each device type
- **Timeout protection** to prevent hanging on unresponsive devices
- **Error handling** with clear diagnostic messages
- **Progress tracking** with speed estimation for large entropy collections
### Integration Points
- **Pad enhancement** via entropy addition to existing pads
- **Interactive menus** for device selection when multiple devices are present
- **Command-line support** for automated workflows
- **Graceful fallback** to other entropy sources when no hardware RNG is available
## Technical Implementation
### Core Functions
- `detect_all_hardware_rng_devices()` - Scans and identifies all connected devices
- `collect_truerng_entropy_from_device()` - Collects entropy from TrueRNG devices

View File

@@ -1,26 +1,32 @@
CC = gcc
CFLAGS = -Wall -Wextra -std=c99
CFLAGS = -Wall -Wextra -std=c99 -Isrc
LIBS = -lm
LIBS_STATIC = -static -lm
TARGET = otp
SOURCE = otp.c
CHACHA20_SOURCE = nostr_chacha20.c
ARCH = $(shell uname -m)
TARGET = build/otp-$(ARCH)
SOURCES = $(wildcard src/*.c)
OBJS = $(SOURCES:.c=.o)
# Default build target
$(TARGET): $(SOURCE)
$(CC) $(CFLAGS) -o $(TARGET) $(SOURCE) $(CHACHA20_SOURCE) $(LIBS)
$(TARGET): $(OBJS)
@mkdir -p build
$(CC) $(CFLAGS) -o $(TARGET) $(OBJS) $(LIBS)
# Static linking target
static: $(SOURCE)
$(CC) $(CFLAGS) -o $(TARGET) $(SOURCE) $(CHACHA20_SOURCE) $(LIBS_STATIC)
static: $(OBJS)
@mkdir -p build
$(CC) $(CFLAGS) -o $(TARGET) $(OBJS) $(LIBS_STATIC)
%.o: %.c
$(CC) $(CFLAGS) -c $< -o $@
clean:
rm -f $(TARGET) *.pad *.state
rm -f $(OBJS) src/*.o build/otp-* *.pad *.state
install:
sudo cp $(TARGET) /usr/local/bin/
sudo cp $(TARGET) /usr/local/bin/otp
uninstall:
sudo rm -f /usr/local/bin/$(TARGET)
sudo rm -f /usr/local/bin/otp
.PHONY: clean install uninstall static

108
README.md
View File

@@ -48,7 +48,9 @@ One-time pads can be trivially encrypted and decrypted using pencil and paper, m
- **Perfect Security**: Implements true one-time pad encryption with information-theoretic security
- **Text & File Encryption**: Supports both inline text and file encryption
- **Multiple Output Formats**: Binary (.otp) and ASCII armored (.otp.asc) file formats
- **Hardware RNG Support**: Direct entropy collection from TrueRNG USB devices with automatic detection
- **Keyboard Entropy**: Optional keyboard entropy collection for enhanced randomness
- **Modular Architecture**: Clean separation of concerns across multiple source modules
- **Short Command Flags**: Convenient single-character flags for all operations
- **Automatic Versioning**: Built-in semantic versioning with automatic patch increment
- **Multiple Build Options**: Standard and static linking builds
@@ -170,13 +172,117 @@ These files are excluded from git (.gitignore) and regenerated on each build.
otp/
├── build.sh # Build script with automatic versioning
├── Makefile # Traditional make build system
├── otp.c # Main source code
├── otp.c # Legacy compatibility and global definitions
├── README.md # This file
├── .gitignore # Git ignore rules
├── include/
│ └── otp.h # Public API header with all function prototypes
├── src/
│ ├── main.c # Main application entry point and command line handling
│ ├── ui.c # Interactive user interface and menu system
│ ├── state.c # Global state management (pads directory, terminal dimensions)
│ ├── crypto.c # Core cryptographic operations (XOR, ChaCha20)
│ ├── pads.c # Pad management and file operations
│ ├── entropy.c # Entropy collection from various sources
│ ├── trng.c # Hardware RNG device detection and entropy collection
│ └── util.c # Utility functions and helpers
├── pads/ # OTP pad storage directory (created at runtime)
└── VERSION # Plain text version (generated)
```
## Architecture
The OTP cipher uses a modular architecture with clean separation of concerns:
- **main.c**: Application entry point, command line parsing, and mode selection
- **ui.c**: Interactive user interface, menus, and terminal management
- **state.c**: Global state management (pads directory, terminal dimensions, preferences)
- **crypto.c**: Core cryptographic operations (XOR encryption, ChaCha20 entropy mixing)
- **pads.c**: Pad file management, checksums, and state tracking
- **entropy.c**: Entropy collection from keyboard, dice, and other sources
- **trng.c**: Hardware RNG device detection and entropy collection from USB devices
- **util.c**: Utility functions, file operations, and helper routines
All modules share a common header (`include/otp.h`) that defines the public API and data structures.
## Hardware RNG Device Support
The OTP cipher includes comprehensive support for hardware random number generators (RNGs) to enhance entropy quality for pad generation and entropy addition operations.
### Supported Devices
The system automatically detects and supports the following hardware RNG devices:
| Device | VID:PID | Status | Notes |
|--------|---------|--------|-------|
| **TrueRNG** | 04d8:f5fe | ✅ Working | Original TrueRNG device |
| **TrueRNG (Alt)** | 1fc9:8111 | ✅ Working | Alternative VID/PID combination |
| **TrueRNG Pro** | 04d8:f5fe | ✅ Working | Professional version |
| **TrueRNG Pro V2** | 04d8:f5fe | ✅ Working | Latest professional version |
### Device Detection
The system automatically scans `/dev/ttyACM*` ports and identifies hardware RNG devices by:
1. **USB VID/PID Detection**: Reading vendor and product IDs from sysfs
2. **Device Type Classification**: Identifying specific device variants
3. **Port Configuration**: Applying device-specific serial port settings
4. **Interactive Selection**: Presenting available devices for user selection
### Testing Hardware Devices
A comprehensive test script is included to verify hardware RNG functionality:
```bash
# Run hardware device tests
./test.sh
```
The test script performs:
- **Device Detection**: Scans for and identifies all connected hardware RNG devices
- **Connectivity Testing**: Verifies each device can be opened and read from
- **Configuration Testing**: Validates serial port configuration for each device type
- **Entropy Quality Analysis**: Measures Shannon entropy of collected random data
### Current Test Results
Based on testing with actual hardware devices:
**✅ Working Devices:**
- TrueRNG (Type 1): Full functionality confirmed
- TrueRNG Pro V2 (Type 3): Full functionality confirmed
- Device is detected and identified correctly
- Serial port configuration may need adjustment for this device variant
### Usage in Entropy Collection
When generating pads or adding entropy, the system will:
1. **Auto-detect** all connected hardware RNG devices
2. **Present a menu** of available devices if multiple are found
3. **Test connectivity** before beginning entropy collection
4. **Estimate completion time** based on device speed testing
5. **Collect entropy** with progress indicators and quality metrics
### Device Configuration
Each device type uses optimized serial port settings:
- **TrueRNG devices**: 3Mbps baud rate, 8N1, no flow control
- **Automatic timeout protection**: Prevents hanging on unresponsive devices
- **Error recovery**: Graceful handling of device disconnection during operation
### Troubleshooting
If hardware RNG devices are not detected:
1. **Check USB connections**: Ensure devices are properly connected
2. **Verify permissions**: User must have access to `/dev/ttyACM*` devices
3. **Check device enumeration**: Use `lsusb` to verify USB device recognition
4. **Review sysfs entries**: Ensure VID/PID information is available in `/sys/bus/usb/devices/`
## File Formats
### .otp File Format (Binary)

223
build.sh
View File

@@ -16,18 +16,31 @@ print_error() { echo -e "${RED}[ERROR]${NC} $1"; }
# Global variable for commit message
COMMIT_MESSAGE=""
# Parse command line arguments for -m flag
while [[ $# -gt 0 ]]; do
case $1 in
-m|--message)
COMMIT_MESSAGE="$2"
shift 2
# Parse command line arguments - check if first arg is a command, otherwise treat as commit message
COMMAND=""
if [[ $# -gt 0 ]]; then
case "$1" in
build|clean|install|uninstall)
COMMAND="$1"
shift
;;
*)
# Keep other arguments for main logic
break
# First argument is not a command, so default to build and treat all args as commit message
COMMAND="build"
;;
esac
else
# No arguments, default to build
COMMAND="build"
fi
# Any remaining arguments become the commit message
for arg in "$@"; do
if [[ -z "$COMMIT_MESSAGE" ]]; then
COMMIT_MESSAGE="$arg"
else
COMMIT_MESSAGE="$COMMIT_MESSAGE $arg"
fi
done
# Function to automatically increment version
@@ -135,53 +148,163 @@ update_source_version() {
print_status "Updating version strings in source code..."
# Replace hardcoded version strings in otp.c with the current git tag
if [ -f "otp.c" ]; then
# Replace hardcoded version strings in src/otp.c with the current git tag
if [ -f "src/otp.c" ]; then
# Update main menu version
sed -i "s/OTP v[0-9]\+\.[0-9]\+\.[0-9]\+/OTP $NEW_VERSION/g" otp.c
sed -i "s/OTP v[0-9]\+\.[0-9]\+\.[0-9]\+/OTP $NEW_VERSION/g" src/otp.c
# Update ASCII output version
sed -i "s/Version: v[0-9]\+\.[0-9]\+\.[0-9]\+/Version: $NEW_VERSION/g" otp.c
sed -i "s/Version: v[0-9]\+\.[0-9]\+\.[0-9]\+/Version: $NEW_VERSION/g" src/otp.c
# Update usage/help text version
sed -i "s/Implementation v[0-9]\+\.[0-9]\+\.[0-9]\+/Implementation $NEW_VERSION/g" otp.c
sed -i "s/Implementation v[0-9]\+\.[0-9]\+\.[0-9]\+/Implementation $NEW_VERSION/g" src/otp.c
print_success "Updated version strings in otp.c to $NEW_VERSION"
print_success "Updated version strings in src/otp.c to $NEW_VERSION"
else
print_warning "otp.c not found - skipping version string updates"
print_warning "src/otp.c not found - skipping version string updates"
fi
}
# Cross-platform build functions
check_cross_compiler() {
if ! command -v aarch64-linux-gnu-gcc > /dev/null 2>&1; then
print_error "ARM64/AArch64 cross-compiler not found!"
print_error "Install with: sudo apt install gcc-aarch64-linux-gnu"
print_error "Or on other distros: gcc-cross-aarch64"
return 1
fi
return 0
}
upload_release_asset() {
local api_url="$1"
local token="$2"
local version="$3"
local filename="$4"
local display_name="$5"
if [ ! -f "$filename" ]; then
print_warning "Binary $filename not found, skipping upload"
return 1
fi
print_status "Uploading $filename as '$display_name' to release..."
# Get release ID first
local release_id=$(curl -s -H "Authorization: token $token" \
"$api_url/releases/tags/$version" | \
grep -o '"id":[0-9]*' | head -n1 | cut -d: -f2)
if [ -z "$release_id" ]; then
print_error "Could not get release ID for $version"
return 1
fi
# Upload the asset using multipart/form-data
curl -X POST "$api_url/releases/$release_id/assets" \
-H "Authorization: token $token" \
-F "attachment=@$filename;filename=$display_name"
if [ $? -eq 0 ]; then
print_success "Uploaded $filename as '$display_name' successfully"
else
print_warning "Failed to upload $filename"
return 1
fi
}
create_gitea_release() {
local version="$1"
# Read token from ~/.gitea_token
if [ ! -f "$HOME/.gitea_token" ]; then
print_error "No ~/.gitea_token found. Cannot create release."
print_error "Create ~/.gitea_token with your Gitea access token"
return 1
fi
local token=$(cat "$HOME/.gitea_token" | tr -d '\n\r')
local api_url="https://git.laantungir.net/api/v1/repos/laantungir/otp"
print_status "Creating Gitea release for $version..."
# Create release
local response=$(curl -s -X POST "$api_url/releases" \
-H "Authorization: token $token" \
-H "Content-Type: application/json" \
-d "{\"tag_name\": \"$version\", \"name\": \"$version\", \"body\": \"Automated release for $version\"}")
if echo "$response" | grep -q '"id"'; then
print_success "Created release $version"
# Upload binaries with descriptive names from build directory
upload_release_asset "$api_url" "$token" "$version" "build/otp-x86_64" "otp-${version}-linux-x86_64"
upload_release_asset "$api_url" "$token" "$version" "build/otp-arm64" "otp-${version}-linux-arm64"
else
print_warning "Release may already exist or creation failed"
print_status "Response: $response"
# Try to upload to existing release anyway
upload_release_asset "$api_url" "$token" "$version" "build/otp-x86_64" "otp-${version}-linux-x86_64"
upload_release_asset "$api_url" "$token" "$version" "build/otp-arm64" "otp-${version}-linux-arm64"
fi
}
# Build functions
build_project() {
print_status "Cleaning previous build..."
make clean
increment_version
print_status "Building OTP project..."
make
if [ $? -eq 0 ]; then
print_success "Build completed successfully"
else
print_error "Build failed"
return 1
fi
}
build_static() {
print_status "Cleaning previous build..."
make clean
increment_version
print_status "Building OTP project with static linking..."
make static
if [ $? -eq 0 ]; then
print_success "Static build completed successfully"
# Check for cross-compiler
if ! check_cross_compiler; then
print_warning "ARM64/AArch64 cross-compiler not available, building x86_64 only"
# Build x86_64 only
print_status "Building OTP project for x86_64..."
make CC=gcc ARCH=x86_64
if [ $? -eq 0 ]; then
print_success "x86_64 build completed successfully"
else
print_error "x86_64 build failed"
return 1
fi
else
print_error "Static build failed"
return 1
# Build both architectures
print_status "Building OTP project for x86_64..."
make clean
make CC=gcc ARCH=x86_64
if [ $? -eq 0 ]; then
print_success "x86_64 build completed successfully"
else
print_error "x86_64 build failed"
return 1
fi
print_status "Building OTP project for ARM64/AArch64..."
make clean
make CC=aarch64-linux-gnu-gcc ARCH=arm64
if [ $? -eq 0 ]; then
print_success "ARM64/AArch64 build completed successfully"
else
print_error "ARM64/AArch64 build failed"
return 1
fi
fi
# Create Gitea release with binaries
if [ -f "$HOME/.gitea_token" ]; then
create_gitea_release "$NEW_VERSION"
else
print_warning "No ~/.gitea_token found. Skipping release creation."
print_warning "Create ~/.gitea_token with your Gitea access token to enable releases."
fi
print_success "Build completed successfully"
}
clean_project() {
print_status "Cleaning build artifacts..."
make clean
# Remove build directory
rm -rf build
print_success "Clean completed"
}
@@ -208,13 +331,10 @@ uninstall_project() {
}
# Main script logic
case "${1:-build}" in
case "$COMMAND" in
build)
build_project
;;
static)
build_static
;;
clean)
clean_project
;;
@@ -226,22 +346,31 @@ case "${1:-build}" in
;;
*)
echo "OTP Cipher Build Script"
echo "Usage: $0 [-m \"commit message\"] {build|static|clean|install|uninstall}"
echo "Usage: $0 [command] [commit message]"
echo ""
echo "Options:"
echo " -m, --message \"text\" - Specify commit message (skips interactive prompt)"
echo "Arguments:"
echo " command - {build|clean|install|uninstall} (default: build)"
echo " commit message - Text to use as commit message (optional, skips interactive prompt)"
echo ""
echo "Commands:"
echo " build - Build project with automatic version increment (default)"
echo " static - Build with static linking and version increment"
echo " clean - Clean build artifacts"
echo " build - Cross-compile for x86_64 and ARM64/AArch64 with automatic version increment (default)"
echo " clean - Clean build artifacts and cross-compiled binaries"
echo " install - Install to system (requires build first)"
echo " uninstall - Remove from system"
echo ""
echo "Build Output:"
echo " build/otp-x86_64 - Native x86_64 binary"
echo " build/otp-arm64 - ARM64/AArch64 binary for Raspberry Pi (if cross-compiler available)"
echo ""
echo "Gitea Integration:"
echo " - Automatically creates releases with binaries if ~/.gitea_token exists"
echo " - Requires: ARM64 cross-compiler (gcc-aarch64-linux-gnu)"
echo ""
echo "Examples:"
echo " $0"
echo " $0 -m \"Fixed checksum parsing bug\""
echo " $0 --message \"Added new feature\" static"
echo " $0 \"Fixed checksum parsing bug\""
echo " $0 build \"Added new feature\""
echo " $0 clean"
exit 1
;;
esac

View File

@@ -1,7 +0,0 @@
-----BEGIN OTP MESSAGE-----
Version: v1.0.0
Pad-ChkSum: d0aaeb745bfbc62b1ed8c0eca4f8dc016f4fd9ed49130979f2bb25a2a3c8192e
Pad-Offset: 128
6+JsEJWRpLI2Z62tSw3EMiIjyTWVk0IfSek1to0/nYPXrswMzCtlultBcA==
-----END OTP MESSAGE-----

Binary file not shown.

Binary file not shown.

View File

@@ -1 +0,0 @@
Test file content for decryption

Binary file not shown.

View File

@@ -1 +0,0 @@
Hello, this is a test file for encryption!

View File

@@ -1,7 +0,0 @@
-----BEGIN OTP MESSAGE-----
Version: v0.2.29
Pad-ChkSum: d0d4a489354348b08d8c7b324814d8c50010042e9da47f2c973f32a16a09101b
Pad-Offset: 57
05S8GfS0tFfczNMUz0xrieFGoPSREM4uo5QhFGoBCcOzjfTXTDMt3hRtAQ==
-----END OTP MESSAGE-----

Binary file not shown.

View File

@@ -1 +0,0 @@
This is a test file for encryption.

Binary file not shown.

4615
otp.c

File diff suppressed because it is too large Load Diff

BIN
otp.o

Binary file not shown.

1331
src/crypto.c Normal file

File diff suppressed because it is too large Load Diff

951
src/entropy.c Normal file
View File

@@ -0,0 +1,951 @@
#define _POSIX_C_SOURCE 200809L
#define _DEFAULT_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <unistd.h>
#include <sys/stat.h>
#include <sys/statvfs.h>
#include <sys/ioctl.h>
#include <dirent.h>
#include <time.h>
#include <ctype.h>
#include <termios.h>
#include <fcntl.h>
#include <math.h>
#include "nostr_chacha20.h"
#include "otp.h"
// In-place pad entropy addition using Chacha20 or direct XOR
int add_entropy_to_pad(const char* pad_chksum, const unsigned char* entropy_data,
size_t entropy_size, int display_progress) {
if (!pad_chksum || !entropy_data || entropy_size < 512) {
printf("Error: Invalid entropy data or insufficient entropy\n");
return 1;
}
// Get pad file path
char pad_path[1024];
char state_path[1024];
get_pad_path(pad_chksum, pad_path, state_path);
// Check if pad exists and get size
struct stat pad_stat;
if (stat(pad_path, &pad_stat) != 0) {
printf("Error: Pad file not found: %s\n", pad_path);
return 1;
}
uint64_t pad_size = pad_stat.st_size;
// Determine entropy addition method based on entropy size vs pad size
if (entropy_size >= pad_size) {
// Use direct XOR when entropy >= pad size
return add_entropy_direct_xor(pad_chksum, entropy_data, entropy_size, pad_size, display_progress);
} else {
// Use ChaCha20 when entropy < pad size
return add_entropy_chacha20(pad_chksum, entropy_data, entropy_size, pad_size, display_progress);
}
}
// Direct XOR entropy addition for large entropy sources
int add_entropy_direct_xor(const char* pad_chksum, const unsigned char* entropy_data,
size_t entropy_size, uint64_t pad_size, int display_progress) {
// Get pad file path
char pad_path[1024];
char state_path[1024];
get_pad_path(pad_chksum, pad_path, state_path);
// Open pad file for read/write
FILE* pad_file = fopen(pad_path, "r+b");
if (!pad_file) {
printf("Error: Cannot open pad file for modification: %s\n", pad_path);
printf("Note: Pad files are read-only. Temporarily changing permissions...\n");
// Try to make writable temporarily
if (chmod(pad_path, S_IRUSR | S_IWUSR) != 0) {
printf("Error: Cannot change pad file permissions\n");
return 1;
}
pad_file = fopen(pad_path, "r+b");
if (!pad_file) {
printf("Error: Still cannot open pad file for modification\n");
// Restore read-only
chmod(pad_path, S_IRUSR);
return 1;
}
}
if (display_progress) {
printf("Adding entropy to pad using direct XOR...\n");
printf("Pad size: %.2f GB (%lu bytes)\n", (double)pad_size / (1024.0*1024.0*1024.0), pad_size);
printf("Entropy size: %zu bytes\n", entropy_size);
}
// Process pad in chunks
unsigned char buffer[64 * 1024]; // 64KB chunks
size_t entropy_offset = 0;
uint64_t offset = 0;
time_t start_time = time(NULL);
while (offset < pad_size) {
size_t chunk_size = sizeof(buffer);
if (pad_size - offset < chunk_size) {
chunk_size = pad_size - offset;
}
// Read current pad data
if (fread(buffer, 1, chunk_size, pad_file) != chunk_size) {
printf("Error: Cannot read pad data at offset %lu\n", offset);
fclose(pad_file);
chmod(pad_path, S_IRUSR); // Restore read-only
return 1;
}
// XOR with entropy data (wrap around if entropy smaller than pad)
for (size_t i = 0; i < chunk_size; i++) {
buffer[i] ^= entropy_data[entropy_offset % entropy_size];
entropy_offset++;
}
// Seek back and write modified data
if (fseek(pad_file, offset, SEEK_SET) != 0) {
printf("Error: Cannot seek to offset %lu\n", offset);
fclose(pad_file);
chmod(pad_path, S_IRUSR);
return 1;
}
if (fwrite(buffer, 1, chunk_size, pad_file) != chunk_size) {
printf("Error: Cannot write modified pad data\n");
fclose(pad_file);
chmod(pad_path, S_IRUSR);
return 1;
}
offset += chunk_size;
// Show progress for large pads
if (display_progress && offset % (64 * 1024 * 1024) == 0) { // Every 64MB
show_progress(offset, pad_size, start_time);
}
}
fclose(pad_file);
// Restore read-only permissions
if (chmod(pad_path, S_IRUSR) != 0) {
printf("Warning: Cannot restore pad file to read-only\n");
}
if (display_progress) {
show_progress(pad_size, pad_size, start_time);
printf("\n✓ Entropy successfully added to pad using direct XOR\n");
printf("✓ Pad integrity maintained\n");
printf("✓ %zu bytes of entropy distributed across entire pad\n", entropy_size);
printf("✓ Pad restored to read-only mode\n");
// Update checksum after entropy addition
printf("\n🔄 Updating pad checksum...\n");
char new_chksum[65];
int checksum_result = update_pad_checksum_after_entropy(pad_chksum, new_chksum);
if (checksum_result == 0) {
printf("✓ Pad checksum updated successfully\n");
printf(" Old checksum: %.16s...\n", pad_chksum);
printf(" New checksum: %.16s...\n", new_chksum);
printf("✓ Pad files renamed to new checksum\n");
// Pause before returning to menu to let user see the success message
print_centered_header("Entropy Addition Complete", 1);
} else if (checksum_result == 2) {
printf(" Checksum unchanged (unusual but not an error)\n");
} else {
printf("⚠ Warning: Checksum update failed (entropy was added successfully)\n");
printf(" You may need to manually handle the checksum update\n");
return 1; // Report error despite successful entropy addition
}
}
return 0;
}
// ChaCha20 entropy addition for smaller entropy sources
int add_entropy_chacha20(const char* pad_chksum, const unsigned char* entropy_data,
size_t entropy_size, uint64_t pad_size, int display_progress) {
// Derive Chacha20 key and nonce from entropy
unsigned char key[32], nonce[12];
if (derive_chacha20_params(entropy_data, entropy_size, key, nonce) != 0) {
printf("Error: Failed to derive Chacha20 parameters from entropy\n");
return 1;
}
// Get pad file path
char pad_path[1024];
char state_path[1024];
get_pad_path(pad_chksum, pad_path, state_path);
// Open pad file for read/write
FILE* pad_file = fopen(pad_path, "r+b");
if (!pad_file) {
printf("Error: Cannot open pad file for modification: %s\n", pad_path);
printf("Note: Pad files are read-only. Temporarily changing permissions...\n");
// Try to make writable temporarily
if (chmod(pad_path, S_IRUSR | S_IWUSR) != 0) {
printf("Error: Cannot change pad file permissions\n");
return 1;
}
pad_file = fopen(pad_path, "r+b");
if (!pad_file) {
printf("Error: Still cannot open pad file for modification\n");
// Restore read-only
chmod(pad_path, S_IRUSR);
return 1;
}
}
if (display_progress) {
printf("Adding entropy to pad using Chacha20...\n");
printf("Pad size: %.2f GB (%lu bytes)\n", (double)pad_size / (1024.0*1024.0*1024.0), pad_size);
}
// Process pad in chunks
unsigned char buffer[64 * 1024]; // 64KB chunks
unsigned char keystream[64 * 1024];
uint64_t offset = 0;
uint32_t counter = 0;
time_t start_time = time(NULL);
while (offset < pad_size) {
size_t chunk_size = sizeof(buffer);
if (pad_size - offset < chunk_size) {
chunk_size = pad_size - offset;
}
// Read current pad data
if (fread(buffer, 1, chunk_size, pad_file) != chunk_size) {
printf("Error: Cannot read pad data at offset %lu\n", offset);
fclose(pad_file);
chmod(pad_path, S_IRUSR); // Restore read-only
return 1;
}
// Generate keystream for this chunk
if (chacha20_encrypt(key, counter, nonce, buffer, keystream, chunk_size) != 0) {
printf("Error: Chacha20 keystream generation failed\n");
fclose(pad_file);
chmod(pad_path, S_IRUSR);
return 1;
}
// XOR existing pad with keystream (adds entropy)
for (size_t i = 0; i < chunk_size; i++) {
buffer[i] ^= keystream[i];
}
// Seek back and write modified data
if (fseek(pad_file, offset, SEEK_SET) != 0) {
printf("Error: Cannot seek to offset %lu\n", offset);
fclose(pad_file);
chmod(pad_path, S_IRUSR);
return 1;
}
if (fwrite(buffer, 1, chunk_size, pad_file) != chunk_size) {
printf("Error: Cannot write modified pad data\n");
fclose(pad_file);
chmod(pad_path, S_IRUSR);
return 1;
}
offset += chunk_size;
counter += (chunk_size + 63) / 64; // Round up for block count
// Show progress for large pads
if (display_progress && offset % (64 * 1024 * 1024) == 0) { // Every 64MB
show_progress(offset, pad_size, start_time);
}
}
fclose(pad_file);
// Restore read-only permissions
if (chmod(pad_path, S_IRUSR) != 0) {
printf("Warning: Cannot restore pad file to read-only\n");
}
if (display_progress) {
show_progress(pad_size, pad_size, start_time);
printf("\n✓ Entropy successfully added to pad using Chacha20\n");
printf("✓ Pad integrity maintained\n");
printf("✓ %zu bytes of entropy distributed across entire pad\n", entropy_size);
printf("✓ Pad restored to read-only mode\n");
// Update checksum after entropy addition
printf("\n🔄 Updating pad checksum...\n");
char new_chksum[65];
int checksum_result = update_pad_checksum_after_entropy(pad_chksum, new_chksum);
if (checksum_result == 0) {
printf("✓ Pad checksum updated successfully\n");
printf(" Old checksum: %.16s...\n", pad_chksum);
printf(" New checksum: %.16s...\n", new_chksum);
printf("✓ Pad files renamed to new checksum\n");
// Pause before returning to menu to let user see the success message
print_centered_header("Entropy Addition Complete", 1);
} else if (checksum_result == 2) {
printf(" Checksum unchanged (unusual but not an error)\n");
} else {
printf("⚠ Warning: Checksum update failed (entropy was added successfully)\n");
printf(" You may need to manually handle the checksum update\n");
return 1; // Report error despite successful entropy addition
}
}
return 0;
}
// Enhanced entropy collection with visual feedback
int collect_entropy_with_feedback(unsigned char* entropy_buffer, size_t target_bytes,
size_t* collected_bytes, int allow_early_exit) {
struct termios original_termios;
entropy_collection_state_t state = {0};
// Initialize state
state.target_bytes = target_bytes;
state.auto_complete_enabled = allow_early_exit;
state.collection_start_time = get_precise_time();
// Setup raw terminal
if (setup_raw_terminal(&original_termios) != 0) {
printf("Error: Cannot setup terminal for entropy collection\n");
return 1;
}
// Clear screen area for display
printf("\n\n\n\n\n\n");
printf("\033[2J\033[H"); // Clear screen and move to top
unsigned char entropy_block[16];
struct timespec timestamp;
uint32_t sequence_counter = 0;
char key;
unsigned char seen_keys[256] = {0};
*collected_bytes = 0;
while (state.collected_bytes < target_bytes) {
// Update display
state.quality_score = calculate_overall_quality(&state);
display_entropy_progress(&state);
// Non-blocking read
if (read(STDIN_FILENO, &key, 1) == 1) {
// Handle ESC key for early exit
if (key == 27 && allow_early_exit && state.collected_bytes >= 1024) {
break; // Early exit allowed
}
// Record keypress timing
double current_time = get_precise_time();
state.last_keypress_time = current_time;
// Update key histogram
state.key_histogram[(unsigned char)key]++;
// Get high precision timestamp
clock_gettime(CLOCK_MONOTONIC, &timestamp);
// Create enhanced entropy block: [key][timestamp][sequence][quality_bits]
entropy_block[0] = key;
memcpy(&entropy_block[1], &timestamp.tv_sec, 8);
memcpy(&entropy_block[9], &timestamp.tv_nsec, 4);
memcpy(&entropy_block[13], &sequence_counter, 2);
entropy_block[15] = (unsigned char)(current_time * 1000) & 0xFF; // Sub-millisecond timing
// Add to entropy buffer
if (state.collected_bytes + 16 <= MAX_ENTROPY_BUFFER) {
memcpy(entropy_buffer + state.collected_bytes, entropy_block, 16);
state.collected_bytes += 16;
}
sequence_counter++;
// Track unique keys
if (!seen_keys[(unsigned char)key]) {
seen_keys[(unsigned char)key] = 1;
state.unique_keys++;
}
} else {
// No key available, just sleep and wait for keystrokes
usleep(10000); // 10ms delay - wait for keystrokes, don't add timing entropy
}
// Auto-complete at target if enabled
if (state.collected_bytes >= target_bytes) {
break;
}
}
// Final display update
state.quality_score = calculate_overall_quality(&state);
display_entropy_progress(&state);
// Summary
double collection_time = get_precise_time() - state.collection_start_time;
printf("\n\n✓ Entropy collection complete!\n");
printf(" Collected: %zu bytes in %.1f seconds\n", state.collected_bytes, collection_time);
printf(" Quality: %d%% (Excellent: 80%%+, Good: 60%%+)\n", state.quality_score);
printf(" Unique keys: %zu\n", state.unique_keys);
// Restore terminal
restore_terminal(&original_termios);
*collected_bytes = state.collected_bytes;
return 0;
}
// Chacha20 key derivation from collected entropy
int derive_chacha20_params(const unsigned char* entropy_data, size_t entropy_size,
unsigned char key[32], unsigned char nonce[12]) {
if (!entropy_data || entropy_size < 512 || !key || !nonce) {
return 1; // Error: insufficient entropy or null pointers
}
// Phase 1: Generate base key from entropy using enhanced XOR checksum method
unsigned char enhanced_checksum[44]; // 32 key + 12 nonce
memset(enhanced_checksum, 0, 44);
// Mix entropy data similar to calculate_checksum but for 44 bytes
for (size_t i = 0; i < entropy_size; i++) {
unsigned char bucket = i % 44;
enhanced_checksum[bucket] ^= entropy_data[i] ^
((i >> 8) & 0xFF) ^
((i >> 16) & 0xFF) ^
((i >> 24) & 0xFF);
}
// Phase 2: Add system entropy for additional randomness
unsigned char system_entropy[32];
FILE* urandom = fopen("/dev/urandom", "rb");
if (!urandom) {
return 2; // Error: cannot access system entropy
}
if (fread(system_entropy, 1, 32, urandom) != 32) {
fclose(urandom);
return 2; // Error: insufficient system entropy
}
fclose(urandom);
// Mix system entropy into derived key
for (int i = 0; i < 32; i++) {
enhanced_checksum[i] ^= system_entropy[i];
}
// Extract key and nonce
memcpy(key, enhanced_checksum, 32);
memcpy(nonce, enhanced_checksum + 32, 12);
return 0; // Success
}
// Get file path and size information for entropy collection
int get_file_entropy_info(char* file_path, size_t max_path_len, size_t* file_size, int display_progress) {
if (display_progress) {
print_centered_header("File Entropy Collection", 0);
printf("Load entropy from binary file (.bin format)\n");
}
printf("Enter path to binary entropy file: ");
fflush(stdout);
if (!fgets(file_path, max_path_len, stdin)) {
printf("Error: Failed to read input\n");
return 1;
}
// Remove newline
file_path[strcspn(file_path, "\n")] = 0;
// Check if file exists and get size
struct stat file_stat;
if (stat(file_path, &file_stat) != 0) {
printf("Error: File '%s' not found\n", file_path);
return 1;
}
if (!S_ISREG(file_stat.st_mode)) {
printf("Error: '%s' is not a regular file\n", file_path);
return 1;
}
*file_size = file_stat.st_size;
if (*file_size == 0) {
printf("Error: File is empty\n");
return 1;
}
if (display_progress) {
printf("✓ File found: %s\n", file_path);
printf(" Size: %zu bytes\n", *file_size);
}
return 0; // Success
}
// Collect entropy from binary file (legacy function for backward compatibility)
int collect_file_entropy(unsigned char* entropy_buffer, size_t target_bytes,
size_t* collected_bytes, int display_progress) {
char file_path[512];
size_t file_size;
// Get file path and size first
if (get_file_entropy_info(file_path, sizeof(file_path), &file_size, display_progress) != 0) {
return 1;
}
if (file_size < target_bytes) {
printf("Warning: File size (%zu bytes) is smaller than target (%zu bytes)\n",
file_size, target_bytes);
printf("Will read available data and pad with zeros if necessary.\n");
}
// Open file for reading
FILE* entropy_file = fopen(file_path, "rb");
if (!entropy_file) {
printf("Error: Cannot open file '%s' for reading\n", file_path);
return 1;
}
if (display_progress) {
printf("Reading entropy from file...\n");
}
// Read entropy data
size_t bytes_to_read = (file_size < target_bytes) ? file_size : target_bytes;
size_t bytes_read = fread(entropy_buffer, 1, bytes_to_read, entropy_file);
if (bytes_read != bytes_to_read) {
printf("Error: Failed to read %zu bytes from file (read %zu)\n",
bytes_to_read, bytes_read);
fclose(entropy_file);
return 1;
}
fclose(entropy_file);
// Pad with zeros if file was smaller than target
if (bytes_read < target_bytes) {
memset(entropy_buffer + bytes_read, 0, target_bytes - bytes_read);
*collected_bytes = target_bytes; // We padded to target size
} else {
*collected_bytes = bytes_read;
}
if (display_progress) {
printf("✓ File entropy collection complete!\n");
printf(" File: %s\n", file_path);
printf(" Read: %zu bytes\n", bytes_read);
printf(" Total: %zu bytes (padded to target if necessary)\n", *collected_bytes);
}
return 0; // Success
}
// Add file entropy directly to pad using streaming (for large files)
int add_file_entropy_streaming(const char* pad_chksum, const char* file_path, size_t file_size, int display_progress) {
// Get pad file path
char pad_path[1024];
char state_path[1024];
get_pad_path(pad_chksum, pad_path, state_path);
// Check if pad exists and get size
struct stat pad_stat;
if (stat(pad_path, &pad_stat) != 0) {
printf("Error: Pad file not found: %s\n", pad_path);
return 1;
}
uint64_t pad_size = pad_stat.st_size;
// Open entropy file for reading
FILE* entropy_file = fopen(file_path, "rb");
if (!entropy_file) {
printf("Error: Cannot open entropy file '%s' for reading\n", file_path);
return 1;
}
// Open pad file for read/write
FILE* pad_file = fopen(pad_path, "r+b");
if (!pad_file) {
printf("Error: Cannot open pad file for modification: %s\n", pad_path);
fclose(entropy_file);
return 1;
}
if (display_progress) {
printf("Adding entropy to pad using streaming direct XOR...\n");
printf("Pad size: %.2f GB (%lu bytes)\n", (double)pad_size / (1024.0*1024.0*1024.0), pad_size);
printf("Entropy file: %.2f GB (%zu bytes)\n", (double)file_size / (1024.0*1024.0*1024.0), file_size);
}
// Process in chunks
unsigned char pad_buffer[64 * 1024];
unsigned char entropy_buffer[64 * 1024];
uint64_t offset = 0;
size_t entropy_offset = 0;
time_t start_time = time(NULL);
while (offset < pad_size) {
size_t chunk_size = sizeof(pad_buffer);
if (pad_size - offset < chunk_size) {
chunk_size = pad_size - offset;
}
// Read current pad data
if (fread(pad_buffer, 1, chunk_size, pad_file) != chunk_size) {
printf("Error: Cannot read pad data at offset %lu\n", offset);
fclose(entropy_file);
fclose(pad_file);
return 1;
}
// Read entropy data (wrap around if file smaller than pad)
size_t entropy_read = 0;
while (entropy_read < chunk_size) {
size_t to_read = chunk_size - entropy_read;
if (to_read > sizeof(entropy_buffer)) {
to_read = sizeof(entropy_buffer);
}
size_t read_bytes = fread(entropy_buffer, 1, to_read, entropy_file);
if (read_bytes == 0) {
// Reached end of entropy file, wrap around
fseek(entropy_file, 0, SEEK_SET);
entropy_offset = 0;
read_bytes = fread(entropy_buffer, 1, to_read, entropy_file);
if (read_bytes == 0) {
printf("Error: Cannot read from entropy file\n");
fclose(entropy_file);
fclose(pad_file);
return 1;
}
}
// XOR this chunk
for (size_t i = 0; i < read_bytes; i++) {
pad_buffer[entropy_read + i] ^= entropy_buffer[i];
}
entropy_read += read_bytes;
entropy_offset += read_bytes;
}
// Seek back and write modified data
if (fseek(pad_file, offset, SEEK_SET) != 0) {
printf("Error: Cannot seek to offset %lu\n", offset);
fclose(entropy_file);
fclose(pad_file);
return 1;
}
if (fwrite(pad_buffer, 1, chunk_size, pad_file) != chunk_size) {
printf("Error: Cannot write modified pad data\n");
fclose(entropy_file);
fclose(pad_file);
return 1;
}
offset += chunk_size;
// Show progress for large pads
if (display_progress && offset % (64 * 1024 * 1024) == 0) {
show_progress(offset, pad_size, start_time);
}
}
fclose(entropy_file);
fclose(pad_file);
if (display_progress) {
show_progress(pad_size, pad_size, start_time);
printf("\n✓ Entropy successfully added to pad using streaming direct XOR\n");
printf("✓ Pad integrity maintained\n");
printf("✓ %zu bytes of entropy distributed across entire pad\n", file_size);
}
return 0;
}
// Collect entropy by source type with unified interface
int collect_entropy_by_source(entropy_source_t source, unsigned char* entropy_buffer,
size_t target_bytes, size_t* collected_bytes, int display_progress) {
switch (source) {
case ENTROPY_SOURCE_KEYBOARD:
return collect_entropy_with_feedback(entropy_buffer, target_bytes, collected_bytes, 1);
case ENTROPY_SOURCE_TRUERNG:
return collect_truerng_entropy(entropy_buffer, target_bytes, collected_bytes, display_progress);
case ENTROPY_SOURCE_DICE:
return collect_dice_entropy(entropy_buffer, target_bytes, collected_bytes, display_progress);
case ENTROPY_SOURCE_FILE:
return collect_file_entropy(entropy_buffer, target_bytes, collected_bytes, display_progress);
default:
if (display_progress) {
printf("Error: Unknown entropy source\n");
}
return 1;
}
}
// Collect manual entropy from any printable character input
int collect_dice_entropy(unsigned char* entropy_buffer, size_t target_bytes,
size_t* collected_bytes, int display_progress) {
if (display_progress) {
print_centered_header("Manual Entropy Collection", 0);
printf("Enter any text, numbers, or symbols for entropy.\n");
printf("Target: %zu bytes (%zu characters needed)\n", target_bytes, target_bytes);
printf("Press Enter after each line, or 'done' when finished.\n\n");
}
size_t bytes_written = 0;
char input[256];
while (bytes_written < target_bytes) {
if (display_progress) {
double percentage = (double)bytes_written / target_bytes * 100.0;
printf("Progress: %.1f%% (%zu/%zu bytes) - Enter text: ",
percentage, bytes_written, target_bytes);
fflush(stdout);
}
if (!fgets(input, sizeof(input), stdin)) {
if (display_progress) {
printf("Error: Failed to read input\n");
}
return 1;
}
// Remove newline
input[strcspn(input, "\n")] = 0;
// Check for done command
if (strcmp(input, "done") == 0 && bytes_written >= target_bytes / 2) {
break; // Allow early exit if we have at least half the target
}
// Process each printable character as 8 bits of entropy
for (size_t i = 0; input[i] && bytes_written < target_bytes; i++) {
char c = input[i];
if (c >= 32 && c <= 126) { // Printable ASCII characters
entropy_buffer[bytes_written++] = (unsigned char)c;
}
}
}
if (display_progress) {
printf("\n✓ Manual entropy collection complete!\n");
printf(" Collected: %zu bytes from text input\n", bytes_written);
printf(" Entropy quality: 8 bits per character\n");
}
*collected_bytes = bytes_written;
return 0; // Success
}
void restore_terminal(struct termios* original_termios) {
tcsetattr(STDIN_FILENO, TCSANOW, original_termios);
// Reset stdin to blocking
int flags = fcntl(STDIN_FILENO, F_GETFL);
fcntl(STDIN_FILENO, F_SETFL, flags & ~O_NONBLOCK);
}
double get_precise_time(void) {
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return ts.tv_sec + ts.tv_nsec / 1000000000.0;
}
void draw_progress_bar(double percentage, int width) {
int filled = (int)(percentage / 100.0 * width);
if (filled > width) filled = width;
printf("[");
for (int i = 0; i < filled; i++) {
printf("");
}
for (int i = filled; i < width; i++) {
printf("");
}
printf("]");
}
void draw_quality_bar(double quality, int width, const char* label) {
int filled = (int)(quality / 100.0 * width);
if (filled > width) filled = width;
// Color coding based on quality
const char* color;
if (quality >= 80) color = "\033[32m"; // Green
else if (quality >= 60) color = "\033[33m"; // Yellow
else color = "\033[31m"; // Red
printf("%s", color);
draw_progress_bar(quality, width);
printf("\033[0m %-10s", label); // Reset color
}
double calculate_timing_quality(const entropy_collection_state_t* state) {
// Analyze timing variance between keypresses
if (state->collected_bytes < 32) return 0.0; // Need minimum data
// Simplified timing quality based on collection rate and variation
double elapsed = get_precise_time() - state->collection_start_time;
if (elapsed < 0.1) return 0.0;
double rate = state->collected_bytes / elapsed;
// Optimal rate is around 50-200 bytes/second (moderate typing with good timing variance)
if (rate >= 50 && rate <= 200) return 90.0;
if (rate >= 20 && rate <= 500) return 70.0;
if (rate >= 10 && rate <= 1000) return 50.0;
return 30.0;
}
double calculate_variety_quality(const entropy_collection_state_t* state) {
// Analyze key variety and distribution
if (state->collected_bytes < 16) return 0.0;
// Calculate entropy from key histogram
double entropy = 0.0;
size_t total_keys = 0;
// Count total keypresses
for (int i = 0; i < 256; i++) {
total_keys += state->key_histogram[i];
}
if (total_keys == 0) return 0.0;
// Calculate Shannon entropy
for (int i = 0; i < 256; i++) {
if (state->key_histogram[i] > 0) {
double p = (double)state->key_histogram[i] / total_keys;
entropy -= p * log2(p);
}
}
// Convert entropy to quality score (0-100)
double max_entropy = log2(256); // Perfect entropy for 8-bit keyspace
double normalized_entropy = entropy / max_entropy;
// Scale based on unique keys as well
double unique_key_factor = (double)state->unique_keys / 50.0; // 50+ unique keys is excellent
if (unique_key_factor > 1.0) unique_key_factor = 1.0;
return (normalized_entropy * 70.0 + unique_key_factor * 30.0);
}
unsigned char calculate_overall_quality(const entropy_collection_state_t* state) {
double timing = calculate_timing_quality(state);
double variety = calculate_variety_quality(state);
// Simple collection progress bonus
double progress_bonus = (double)state->collected_bytes / state->target_bytes * 20.0;
if (progress_bonus > 20.0) progress_bonus = 20.0;
// Weighted average
double overall = (timing * 0.4 + variety * 0.4 + progress_bonus);
if (overall > 100.0) overall = 100.0;
return (unsigned char)overall;
}
void display_entropy_progress(const entropy_collection_state_t* state) {
// Calculate percentages
double progress = (double)state->collected_bytes / state->target_bytes * 100.0;
if (progress > 100.0) progress = 100.0;
double quality = state->quality_score;
double timing_quality = calculate_timing_quality(state);
double variety_quality = calculate_variety_quality(state);
// Clear previous output and redraw
printf("\033[2K\r"); // Clear line
printf("\033[A\033[2K\r"); // Move up and clear
printf("\033[A\033[2K\r"); // Move up and clear
printf("\033[A\033[2K\r"); // Move up and clear
printf("\033[A\033[2K\r"); // Move up and clear
printf("\033[A\033[2K\r"); // Move up and clear
// Header
printf("Adding Entropy to Pad - Target: %zu bytes\n\n", state->target_bytes);
// Main progress bar
printf("Progress: ");
draw_progress_bar(progress, 50);
printf(" %.1f%% (%zu/%zu bytes)\n", progress, state->collected_bytes, state->target_bytes);
// Quality indicators
printf("Quality: ");
draw_quality_bar(quality, 50, "OVERALL");
printf("\n");
printf("Timing: ");
draw_quality_bar(timing_quality, 50, "VARIED");
printf("\n");
printf("Keys: ");
draw_quality_bar(variety_quality, 50, "DIVERSE");
printf("\n");
// Instructions
if (state->collected_bytes >= 1024 && state->auto_complete_enabled) {
printf("\nPress ESC to finish (minimum reached) or continue typing...");
} else if (state->collected_bytes < 1024) {
printf("\nType random keys... (%zu more bytes needed)", 1024 - state->collected_bytes);
} else {
printf("\nType random keys or press ESC when satisfied...");
}
fflush(stdout);
}
// Keyboard entropy functions
int setup_raw_terminal(struct termios* original_termios) {
struct termios new_termios;
if (tcgetattr(STDIN_FILENO, original_termios) != 0) {
return 1;
}
new_termios = *original_termios;
new_termios.c_lflag &= ~(ICANON | ECHO);
new_termios.c_cc[VMIN] = 0;
new_termios.c_cc[VTIME] = 0;
if (tcsetattr(STDIN_FILENO, TCSANOW, &new_termios) != 0) {
return 1;
}
// Set stdin to non-blocking
int flags = fcntl(STDIN_FILENO, F_GETFL);
if (fcntl(STDIN_FILENO, F_SETFL, flags | O_NONBLOCK) == -1) {
tcsetattr(STDIN_FILENO, TCSANOW, original_termios);
return 1;
}
return 0;
}

270
src/main.c Normal file
View File

@@ -0,0 +1,270 @@
#define _POSIX_C_SOURCE 200809L
#define _DEFAULT_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <unistd.h>
#include <sys/stat.h>
#include <sys/statvfs.h>
#include <sys/ioctl.h>
#include <dirent.h>
#include <time.h>
#include <ctype.h>
#include <termios.h>
#include <fcntl.h>
#include <math.h>
#include "otp.h"
int main(int argc, char* argv[]) {
// Initialize terminal dimensions first
init_terminal_dimensions();
// Load preferences
load_preferences();
// Detect interactive mode: true when running with no arguments AND no piped input
int is_interactive = (argc == 1 && !has_stdin_data());
set_interactive_mode(is_interactive);
// Check for OTP thumb drive on startup
char otp_drive_path[512];
if (detect_otp_thumb_drive(otp_drive_path, sizeof(otp_drive_path))) {
// Only show messages in interactive mode
if (get_interactive_mode()) {
printf("Detected OTP thumb drive: %s\n", otp_drive_path);
printf("Using as default pads directory for this session.\n\n");
}
set_current_pads_dir(otp_drive_path);
}
if (get_interactive_mode()) {
return interactive_mode();
} else {
return command_line_mode(argc, argv);
}
}
int command_line_mode(int argc, char* argv[]) {
// Check for help flags first (only if we have arguments)
if (argc > 1 && (strcmp(argv[1], "-h") == 0 || strcmp(argv[1], "--h") == 0 ||
strcmp(argv[1], "-help") == 0 || strcmp(argv[1], "--help") == 0 ||
strcmp(argv[1], "help") == 0)) {
print_usage(argv[0]);
return 0;
}
// If no arguments but piped input, default to encrypt mode
if (argc == 1 && has_stdin_data()) {
char* piped_text = read_stdin_text();
if (piped_text) {
int result = pipe_mode(argc, argv, piped_text);
free(piped_text);
return result;
}
}
if (argc > 1 && (strcmp(argv[1], "generate") == 0 || strcmp(argv[1], "-g") == 0)) {
if (argc != 3) {
printf("Usage: %s generate|-g <size>\n", argv[0]);
printf("Size examples: 1024, 1GB, 5TB, 512MB\n");
return 1;
}
uint64_t size = parse_size_string(argv[2]);
if (size == 0) {
printf("Error: Invalid size format\n");
return 1;
}
return generate_pad(size, 1); // Use simplified pad generation
}
else if (strcmp(argv[1], "encrypt") == 0 || strcmp(argv[1], "-e") == 0) {
// Check for piped input first
if (has_stdin_data()) {
char* piped_text = read_stdin_text();
if (piped_text) {
int result = pipe_mode(argc, argv, piped_text);
free(piped_text);
return result;
}
}
if (argc < 2 || argc > 4) {
printf("Usage: %s encrypt|-e [pad_chksum_or_prefix] [text_to_encrypt]\n", argv[0]);
return 1;
}
// Check if pad was specified or use default
const char* pad_identifier = NULL;
const char* text = NULL;
if (argc == 2) {
// Just -e, use default pad, no text (interactive)
pad_identifier = NULL;
text = NULL;
} else if (argc == 3) {
// Could be -e <pad> or -e <text> (using default pad)
// Check if default pad is available to determine interpretation
char* default_pad = get_default_pad_path();
if (default_pad) {
// Default pad available, treat argument as text
pad_identifier = NULL;
text = argv[2];
free(default_pad);
} else {
// No default pad, treat as pad identifier
pad_identifier = argv[2];
text = NULL;
}
} else {
// argc == 4: -e <pad> <text>
pad_identifier = argv[2];
text = argv[3];
}
// If pad_identifier is NULL, we need to use default pad
if (pad_identifier == NULL) {
char* default_pad = get_default_pad_path();
if (default_pad) {
// Extract checksum from default pad path
char* filename = strrchr(default_pad, '/');
if (!filename) filename = default_pad;
else filename++; // Skip the '/'
// Extract checksum (remove .pad extension)
if (strlen(filename) >= 68 && strstr(filename, ".pad")) {
static char default_checksum[65];
strncpy(default_checksum, filename, 64);
default_checksum[64] = '\0';
pad_identifier = default_checksum;
}
free(default_pad);
// Call encrypt_text and return result
return encrypt_text(pad_identifier, text);
} else {
printf("Error: No default pad configured. Specify pad explicitly or configure default pad.\n");
return 1;
}
} else {
// Explicit pad specified, normal operation
return encrypt_text(pad_identifier, text);
}
}
else if (strcmp(argv[1], "decrypt") == 0 || strcmp(argv[1], "-d") == 0) {
if (argc == 2) {
// Check for piped input first
if (has_stdin_data()) {
// Piped decrypt mode - read stdin and decrypt silently
char* piped_message = read_stdin_text();
if (piped_message) {
int result = decrypt_text(NULL, piped_message);
free(piped_message);
return result;
}
}
// Interactive mode - no arguments needed
return decrypt_text(NULL, NULL);
}
else if (argc == 3) {
// Check if the argument looks like an encrypted message (starts with -----)
if (strncmp(argv[2], "-----BEGIN OTP MESSAGE-----", 27) == 0) {
// Inline decrypt with message only - use silent mode for command line
return decrypt_text(NULL, argv[2]);
} else {
// Check if it's a file (contains . or ends with known extensions)
if (strstr(argv[2], ".") != NULL) {
// Treat as file
return decrypt_file(argv[2], NULL);
} else {
// Interactive decrypt with pad hint (legacy support)
return decrypt_text(argv[2], NULL);
}
}
}
else if (argc == 4) {
// Check for -o flag for output file
if (strcmp(argv[2], "-o") == 0) {
printf("Usage: %s decrypt|-d <input_file> [-o <output_file>]\n", argv[0]);
return 1;
} else {
// Legacy format: pad_chksum and message, or file with output
// Use silent mode for command line when message is provided
return decrypt_text(argv[2], argv[3]);
}
}
else if (argc == 5 && strcmp(argv[3], "-o") == 0) {
// File decryption with output: -d <input_file> -o <output_file>
return decrypt_file(argv[2], argv[4]);
}
else {
printf("Usage: %s decrypt|-d [encrypted_message|file] [-o output_file]\n", argv[0]);
printf(" %s decrypt|-d [encrypted_message] (pad info from message)\n", argv[0]);
return 1;
}
}
else if (strcmp(argv[1], "-f") == 0) {
// File encryption mode: -f <input_file> <pad_prefix> [-a] [-o <output_file>]
if (argc < 4) {
printf("Usage: %s -f <input_file> <pad_prefix> [-a] [-o <output_file>]\n", argv[0]);
return 1;
}
const char* input_file = argv[2];
const char* pad_prefix = argv[3];
int ascii_armor = 0;
const char* output_file = NULL;
// Parse optional flags
for (int i = 4; i < argc; i++) {
if (strcmp(argv[i], "-a") == 0) {
ascii_armor = 1;
} else if (strcmp(argv[i], "-o") == 0 && i + 1 < argc) {
output_file = argv[++i];
}
}
return encrypt_file(pad_prefix, input_file, output_file, ascii_armor);
}
else if (strcmp(argv[1], "list") == 0 || strcmp(argv[1], "-l") == 0) {
printf("Available pads:\n");
char* selected = select_pad_interactive("Available pads:", "Select pad (or press Enter to exit)", PAD_FILTER_ALL, 0);
if (selected) {
free(selected);
}
return 0;
}
else {
print_usage(argv[0]);
return 1;
}
}
void print_usage(const char* program_name) {
printf("OTP Cipher - One Time Pad Implementation v0.3.16\n");
printf("Built for testing entropy system\n");
printf("Usage:\n");
printf(" %s - Interactive mode\n", program_name);
printf(" %s generate|-g <size> - Generate new pad\n", program_name);
printf(" %s encrypt|-e [pad_checksum_prefix] [text] - Encrypt text\n", program_name);
printf(" %s decrypt|-d [encrypted_message] - Decrypt message\n", program_name);
printf(" %s -f <file> <pad_prefix> [-a] [-o <out>] - Encrypt file\n", program_name);
printf(" %s list|-l - List available pads\n", program_name);
printf("\nFile Operations:\n");
printf(" -f <file> <pad> - Encrypt file (binary .otp format)\n");
printf(" -f <file> <pad> -a - Encrypt file (ASCII .otp.asc format)\n");
printf(" -o <output> - Specify output filename\n");
printf("\nShort flags:\n");
printf(" -g generate -e encrypt -d decrypt -l list -f file\n");
printf("\nExamples:\n");
printf(" %s -e 1a2b3c \"Hello world\" - Encrypt inline text\n", program_name);
printf(" %s -f document.pdf 1a2b - Encrypt file (binary)\n", program_name);
printf(" %s -f document.pdf 1a2b -a - Encrypt file (ASCII)\n", program_name);
printf(" %s -f document.pdf 1a2b -o secret.otp - Encrypt with custom output\n", program_name);
printf(" %s -d \"-----BEGIN OTP MESSAGE-----...\" - Decrypt message/file\n", program_name);
printf(" %s -d encrypted.otp.asc - Decrypt ASCII file\n", program_name);
printf(" %s -g 1GB - Generate 1GB pad\n", program_name);
printf(" %s -l - List pads\n", program_name);
printf("\nSize examples: 1GB, 5TB, 512MB, 2048 (bytes)\n");
printf("Pad selection: Full chksum or prefix\n");
}

35
src/otp.c Normal file
View File

@@ -0,0 +1,35 @@
#define _POSIX_C_SOURCE 200809L
#define _DEFAULT_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <unistd.h>
#include <sys/stat.h>
#include <sys/statvfs.h>
#include <sys/ioctl.h>
#include <dirent.h>
#include <time.h>
#include <ctype.h>
#include <termios.h>
#include <fcntl.h>
#include <math.h>
#include "nostr_chacha20.h"
#include "otp.h"
#define MAX_INPUT_SIZE 4096
#define MAX_LINE_LENGTH 1024
#define MAX_HASH_LENGTH 65
#define PROGRESS_UPDATE_INTERVAL (64 * 1024 * 1024) // 64MB intervals
#define DEFAULT_PADS_DIR "pads"
#define FILES_DIR "files"
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// GLOBAL VARIABLES
///////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
char current_pads_dir[512] = DEFAULT_PADS_DIR;

338
src/otp.h Normal file
View File

@@ -0,0 +1,338 @@
#ifndef OTP_H
#define OTP_H
////////////////////////////////////////////////////////////////////////////////
// OTP CIPHER - FUNCTION PROTOTYPES HEADER
// One Time Pad Implementation v0.2.109
//
// This header file contains all function prototypes extracted from otp.c
// Organized by functional categories for better maintainability
////////////////////////////////////////////////////////////////////////////////
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <termios.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <time.h>
#include <dirent.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>
#include <ctype.h>
// Constants
#define MAX_INPUT_SIZE 4096
#define MAX_LINE_LENGTH 1024
#define MAX_HASH_LENGTH 65
#define PROGRESS_UPDATE_INTERVAL (64 * 1024 * 1024) // 64MB intervals
#define DEFAULT_PADS_DIR "pads"
#define FILES_DIR "files"
#define MAX_ENTROPY_BUFFER (4 * 1024 * 1024) // 4MB entropy buffer for large operations
// Global variables - now managed through state module
//////////////////////////////////////////////////////////////////////////////
// STATE MANAGEMENT FUNCTIONS
//////////////////////////////////////////////////////////////////////////////
// State getters and setters
const char* get_current_pads_dir(void);
void set_current_pads_dir(const char* dir);
int get_interactive_mode(void);
void set_interactive_mode(int mode);
int get_terminal_width(void);
int get_terminal_height(void);
void set_terminal_dimensions(int width, int height);
////////////////////////////////////////////////////////////////////////////////
// TYPE DEFINITIONS
////////////////////////////////////////////////////////////////////////////////
// Decrypt operation modes for universal decrypt function
typedef enum {
DECRYPT_MODE_INTERACTIVE, // Interactive text decryption with prompts
DECRYPT_MODE_SILENT, // Silent text decryption (no prompts/labels)
DECRYPT_MODE_FILE_TO_TEXT, // File to text output with prompts
DECRYPT_MODE_FILE_TO_FILE // File to file output (binary)
} decrypt_mode_t;
// Pad filter types for selection functions
typedef enum {
PAD_FILTER_ALL, // Show all pads
PAD_FILTER_UNUSED_ONLY // Show only unused pads (0% usage)
} pad_filter_type_t;
// Enhanced entropy system state structure
typedef struct {
size_t target_bytes; // Target entropy to collect
size_t collected_bytes; // Bytes collected so far
size_t unique_keys; // Number of unique keys pressed
double collection_start_time; // Start timestamp
double last_keypress_time; // Last keypress timestamp
unsigned char quality_score; // Entropy quality (0-100)
int auto_complete_enabled; // Allow auto-complete at minimum
unsigned char key_histogram[256]; // Track key frequency
} entropy_collection_state_t;
////////////////////////////////////////////////////////////////////////////////
// CORE APPLICATION FUNCTIONS
////////////////////////////////////////////////////////////////////////////////
// Main application entry points
int main(int argc, char* argv[]);
int interactive_mode(void);
int command_line_mode(int argc, char* argv[]);
int pipe_mode(int argc, char* argv[], const char* piped_text);
////////////////////////////////////////////////////////////////////////////////
// INPUT/OUTPUT DETECTION FUNCTIONS
////////////////////////////////////////////////////////////////////////////////
// Stdin detection functions
int has_stdin_data(void);
char* read_stdin_text(void);
////////////////////////////////////////////////////////////////////////////////
// PREFERENCES MANAGEMENT FUNCTIONS
////////////////////////////////////////////////////////////////////////////////
// Configuration and preferences handling
int load_preferences(void);
int save_preferences(void);
char* get_preference(const char* key);
int set_preference(const char* key, const char* value);
char* get_default_pad_path(void);
int set_default_pad_path(const char* pad_path);
////////////////////////////////////////////////////////////////////////////////
// HARDWARE DETECTION FUNCTIONS
////////////////////////////////////////////////////////////////////////////////
// OTP thumb drive detection function
int detect_otp_thumb_drive(char* otp_drive_path, size_t path_size);
////////////////////////////////////////////////////////////////////////////////
// USB DRIVE MANAGEMENT FUNCTIONS
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// EXTERNAL TOOL INTEGRATION FUNCTIONS
////////////////////////////////////////////////////////////////////////////////
// Editor and file manager functions
char* get_preferred_editor(void);
char* get_preferred_file_manager(void);
int launch_text_editor(const char* initial_content, char* result_buffer, size_t buffer_size);
int launch_file_manager(const char* start_directory, char* selected_file, size_t buffer_size);
////////////////////////////////////////////////////////////////////////////////
// CORE CRYPTOGRAPHIC OPERATIONS
////////////////////////////////////////////////////////////////////////////////
// Primary encryption/decryption functions
int generate_pad(uint64_t size_bytes, int show_progress);
int encrypt_text(const char* pad_identifier, const char* input_text);
int decrypt_text(const char* pad_identifier, const char* encrypted_message);
int encrypt_file(const char* pad_identifier, const char* input_file, const char* output_file, int ascii_armor);
int decrypt_file(const char* input_file, const char* output_file);
int decrypt_binary_file(FILE* input_fp, const char* output_file);
int decrypt_ascii_file(const char* input_file, const char* output_file);
////////////////////////////////////////////////////////////////////////////////
// ENHANCED ENTROPY SYSTEM FUNCTIONS
////////////////////////////////////////////////////////////////////////////////
// Entropy source types
typedef enum {
ENTROPY_SOURCE_KEYBOARD = 1,
ENTROPY_SOURCE_DICE = 2,
ENTROPY_SOURCE_TRUERNG = 3,
ENTROPY_SOURCE_FILE = 4
} entropy_source_t;
// Terminal control for entropy collection
int setup_raw_terminal(struct termios* original_termios);
void restore_terminal(struct termios* original_termios);
// Entropy collection and feedback
int collect_entropy_with_feedback(unsigned char* entropy_buffer, size_t target_bytes,
size_t* collected_bytes, int allow_early_exit);
void display_entropy_progress(const entropy_collection_state_t* state);
void draw_progress_bar(double percentage, int width);
void draw_quality_bar(double quality, int width, const char* label);
// Hardware RNG Device Constants (lowercase to match sysfs output)
#define TRUERNG_VID "04d8"
#define TRUERNG_ORIGINAL_PID "f5fe"
#define TRUERNG_PRO_PID "0aa0"
#define TRUERNG_PRO_V2_PID "ebb5"
// Hardware RNG Device Type enumeration
typedef enum {
TRUERNG_ORIGINAL = 1,
TRUERNG_PRO = 2,
TRUERNG_PRO_V2 = 3
} hardware_rng_device_type_t;
// Hardware RNG device information structure
typedef struct {
char port_path[256]; // Device port path (e.g., /dev/ttyUSB0)
hardware_rng_device_type_t device_type; // Device type identifier
char friendly_name[64]; // Human-readable device name
int is_working; // 1 if device passes basic test, 0 otherwise
} hardware_rng_device_t;
// Hardware RNG device detection and selection functions
int detect_all_hardware_rng_devices(hardware_rng_device_t* devices, int max_devices, int* num_devices_found);
int test_hardware_rng_device(const hardware_rng_device_t* device);
int select_hardware_rng_device_interactive(hardware_rng_device_t* devices, int num_devices, hardware_rng_device_t* selected_device);
int find_truerng_port(char* port_path, size_t port_path_size, hardware_rng_device_type_t* device_type); // Legacy function for backward compatibility
// TrueRNG entropy collection functions (updated to match implementation)
int configure_rng_serial_port(int fd, hardware_rng_device_type_t device_type);
int setup_truerng_serial_port(const char* port_path);
int collect_truerng_entropy(unsigned char* entropy_buffer, size_t target_bytes, size_t* collected_bytes, int display_progress);
int collect_truerng_entropy_from_device(const hardware_rng_device_t* device, unsigned char* entropy_buffer,
size_t target_bytes, size_t* collected_bytes, int display_progress);
int collect_truerng_entropy_streaming_from_device(const hardware_rng_device_t* device, const char* pad_chksum,
size_t total_bytes, int display_progress, int entropy_mode);
const char* get_truerng_device_name(hardware_rng_device_type_t device_type);
int read_usb_device_info(const char* port_name, char* vid, char* pid);
// Dice entropy collection functions (updated to match implementation)
int collect_dice_entropy(unsigned char* entropy_buffer, size_t target_bytes, size_t* collected_bytes, int display_progress);
// File entropy collection functions
int get_file_entropy_info(char* file_path, size_t max_path_len, size_t* file_size, int display_progress);
int collect_file_entropy(unsigned char* entropy_buffer, size_t target_bytes, size_t* collected_bytes, int display_progress);
int add_file_entropy_streaming(const char* pad_chksum, const char* file_path, size_t file_size, int display_progress);
// Unified entropy collection interface (updated to match implementation)
int collect_entropy_by_source(entropy_source_t source, unsigned char* entropy_buffer, size_t target_bytes, size_t* collected_bytes, int display_progress);
// Entropy quality calculation
double calculate_timing_quality(const entropy_collection_state_t* state);
double calculate_variety_quality(const entropy_collection_state_t* state);
unsigned char calculate_overall_quality(const entropy_collection_state_t* state);
double get_precise_time(void);
// Entropy processing and application
int derive_chacha20_params(const unsigned char* entropy_data, size_t entropy_size,
unsigned char key[32], unsigned char nonce[12]);
int add_entropy_to_pad(const char* pad_chksum, const unsigned char* entropy_data,
size_t entropy_size, int show_progress);
int add_entropy_direct_xor(const char* pad_chksum, const unsigned char* entropy_data,
size_t entropy_size, uint64_t pad_size, int display_progress);
int add_entropy_chacha20(const char* pad_chksum, const unsigned char* entropy_data,
size_t entropy_size, uint64_t pad_size, int display_progress);
int handle_add_entropy_to_pad(const char* pad_chksum);
// Enhanced entropy system helper functions
int update_pad_checksum_after_entropy(const char* old_chksum, char* new_chksum);
int rename_pad_files_safely(const char* old_chksum, const char* new_chksum);
int is_pad_unused(const char* pad_chksum);
////////////////////////////////////////////////////////////////////////////////
// DIRECTORY MANAGEMENT FUNCTIONS
////////////////////////////////////////////////////////////////////////////////
// Directory handling and path management
int ensure_pads_directory(void);
void get_pad_path(const char* chksum, char* pad_path, char* state_path);
const char* get_files_directory(void);
void get_default_file_path(const char* filename, char* result_path, size_t result_size);
void get_directory_display(const char* file_path, char* result, size_t result_size);
////////////////////////////////////////////////////////////////////////////////
// UTILITY FUNCTIONS
////////////////////////////////////////////////////////////////////////////////
// General utility and helper functions
uint64_t parse_size_string(const char* size_str);
char* find_pad_by_prefix(const char* prefix);
int show_pad_info(const char* chksum);
void show_progress(uint64_t current, uint64_t total, time_t start_time);
void format_time_remaining(double seconds, char* buffer, size_t buffer_size);
////////////////////////////////////////////////////////////////////////////////
// FILE OPERATIONS
////////////////////////////////////////////////////////////////////////////////
// File state and checksum operations
int read_state_offset(const char* pad_chksum, uint64_t* offset);
int write_state_offset(const char* pad_chksum, uint64_t offset);
int calculate_checksum(const char* filename, char* checksum_hex);
int calculate_checksum_with_progress(const char* filename, char* checksum_hex, int display_progress, uint64_t file_size);
////////////////////////////////////////////////////////////////////////////////
// UNIVERSAL CORE FUNCTIONS FOR CODE CONSOLIDATION
////////////////////////////////////////////////////////////////////////////////
// Consolidated cryptographic operations
int universal_xor_operation(const unsigned char* data, size_t data_len,
const unsigned char* pad_data, unsigned char* result);
int parse_ascii_message(const char* message, char* chksum, uint64_t* offset, char* base64_data);
int load_pad_data(const char* pad_chksum, uint64_t offset, size_t length, unsigned char** pad_data);
int generate_ascii_armor(const char* chksum, uint64_t offset, const unsigned char* encrypted_data,
size_t data_length, char** ascii_output);
int validate_pad_integrity(const char* pad_path, const char* expected_chksum);
// Universal decrypt function - consolidates all decrypt operations
int universal_decrypt(const char* input_data, const char* output_target, decrypt_mode_t mode);
////////////////////////////////////////////////////////////////////////////////
// BASE64 ENCODING FUNCTIONS
////////////////////////////////////////////////////////////////////////////////
// Custom base64 implementation
char* custom_base64_encode(const unsigned char* input, int length);
unsigned char* custom_base64_decode(const char* input, int* output_length);
////////////////////////////////////////////////////////////////////////////////
// TERMINAL UI FUNCTIONS
////////////////////////////////////////////////////////////////////////////////
// Terminal dimension and UI functions
void init_terminal_dimensions(void);
void print_centered_header(const char* text, int pause_before_clear);
////////////////////////////////////////////////////////////////////////////////
// MENU SYSTEM FUNCTIONS
////////////////////////////////////////////////////////////////////////////////
// Interactive menu interface functions
void show_main_menu(void);
int handle_generate_menu(void);
int handle_encrypt_menu(void);
int handle_decrypt_menu(void);
int handle_pads_menu(void);
int handle_text_encrypt(void);
int handle_file_encrypt(void);
int handle_verify_pad(const char* pad_chksum);
int handle_delete_pad(const char* pad_chksum);
////////////////////////////////////////////////////////////////////////////////
// ENHANCED INPUT FUNCTIONS
////////////////////////////////////////////////////////////////////////////////
// Advanced input handling
int get_filename_with_default(const char* prompt, const char* default_path, char* result, size_t result_size);
////////////////////////////////////////////////////////////////////////////////
// PAD SELECTION FUNCTIONS
////////////////////////////////////////////////////////////////////////////////
// Unified pad selection interface
char* select_pad_interactive(const char* title, const char* prompt, pad_filter_type_t filter_type, int allow_cancel);
////////////////////////////////////////////////////////////////////////////////
// USAGE AND HELP FUNCTIONS
////////////////////////////////////////////////////////////////////////////////
// Help and usage display
void print_usage(const char* program_name);
#endif // OTP_H

1582
src/pads.c Normal file

File diff suppressed because it is too large Load Diff

45
src/state.c Normal file
View File

@@ -0,0 +1,45 @@
#include <string.h>
#include <stdlib.h>
#include "otp.h"
// Global state variables
static char current_pads_dir[512] = DEFAULT_PADS_DIR;
static int is_interactive_mode = 0;
// Terminal dimensions (moved from ui.c to state.c for global access)
static int terminal_width = 80; // Default fallback width
static int terminal_height = 24; // Default fallback height
// Getters and setters for global state
const char* get_current_pads_dir(void) {
return current_pads_dir;
}
void set_current_pads_dir(const char* dir) {
if (dir) {
strncpy(current_pads_dir, dir, sizeof(current_pads_dir) - 1);
current_pads_dir[sizeof(current_pads_dir) - 1] = '\0';
}
}
int get_interactive_mode(void) {
return is_interactive_mode;
}
void set_interactive_mode(int mode) {
is_interactive_mode = mode;
}
int get_terminal_width(void) {
return terminal_width;
}
int get_terminal_height(void) {
return terminal_height;
}
void set_terminal_dimensions(int width, int height) {
terminal_width = width;
terminal_height = height;
}

572
src/trng.c Normal file
View File

@@ -0,0 +1,572 @@
#define _POSIX_C_SOURCE 200809L
#define _DEFAULT_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <unistd.h>
#include <sys/stat.h>
#include <sys/statvfs.h>
#include <sys/ioctl.h>
#include <dirent.h>
#include <time.h>
#include <ctype.h>
#include <termios.h>
#include <fcntl.h>
#include <math.h>
#include <errno.h>
#include "nostr_chacha20.h"
#include "otp.h"
// Basic TrueRNG entropy collection function
int collect_truerng_entropy(unsigned char* entropy_buffer, size_t target_bytes, size_t* collected_bytes, int display_progress) {
hardware_rng_device_t devices[10];
int num_devices_found = 0;
// Detect available TrueRNG devices
if (detect_all_hardware_rng_devices(devices, 10, &num_devices_found) != 0) {
if (display_progress) {
printf("Error: Failed to detect hardware RNG devices\n");
}
return 1;
}
if (num_devices_found == 0) {
if (display_progress) {
printf("No hardware RNG devices found.\n");
printf("\nSupported devices:\n");
printf(" - TrueRNG Original (VID: %s, PID: %s)\n", TRUERNG_VID, TRUERNG_ORIGINAL_PID);
printf(" - TrueRNG Pro (VID: %s, PID: %s)\n", TRUERNG_VID, TRUERNG_PRO_PID);
printf(" - TrueRNG Pro V2 (VID: %s, PID: %s)\n", TRUERNG_VID, TRUERNG_PRO_V2_PID);
printf("\nPlease connect a TrueRNG device and try again.\n");
}
return 1;
}
// Use first available device
hardware_rng_device_t* selected_device = &devices[0];
if (display_progress) {
printf("Using device: %s\n", selected_device->friendly_name);
printf("Collecting %zu bytes of entropy...\n", target_bytes);
}
// Collect entropy from the device
int result = collect_truerng_entropy_from_device(selected_device, entropy_buffer, target_bytes, collected_bytes, display_progress);
if (result != 0) {
if (display_progress) {
printf("Error: Failed to collect entropy from TrueRNG device\n");
}
return 1;
}
if (display_progress) {
printf("✓ Successfully collected %zu bytes of entropy from TrueRNG device\n", *collected_bytes);
}
return 0;
}
// Streaming entropy collection directly to pad file
int collect_truerng_entropy_streaming_from_device(const hardware_rng_device_t* device, const char* pad_chksum,
size_t total_bytes, int display_progress, int entropy_mode) {
(void)entropy_mode; // Suppress unused parameter warning
if (!device || !pad_chksum || total_bytes == 0) {
return 1; // Invalid parameters
}
// Get pad file path
char pad_path[1024];
char state_path[1024];
get_pad_path(pad_chksum, pad_path, state_path);
// Check if pad exists and get size
struct stat pad_stat;
if (stat(pad_path, &pad_stat) != 0) {
if (display_progress) {
printf("Error: Pad file not found: %s\n", pad_path);
}
return 1;
}
uint64_t pad_size = pad_stat.st_size;
if (total_bytes > pad_size) {
if (display_progress) {
printf("Error: Requested entropy (%zu bytes) exceeds pad size (%lu bytes)\n", total_bytes, pad_size);
}
return 1;
}
// Open the RNG device
int device_fd = open(device->port_path, O_RDONLY | O_NOCTTY);
if (device_fd < 0) {
if (display_progress) {
printf("Error: Cannot open RNG device %s: %s\n", device->port_path, strerror(errno));
}
return 1;
}
// Configure serial port for this device type
if (configure_rng_serial_port(device_fd, device->device_type) != 0) {
if (display_progress) {
printf("Error: Failed to configure serial port for %s\n", device->friendly_name);
}
close(device_fd);
return 1;
}
// Standard delay for TrueRNG devices
usleep(100000); // 100ms
// Open pad file for read/write
FILE* pad_file = fopen(pad_path, "r+b");
if (!pad_file) {
if (display_progress) {
printf("Error: Cannot open pad file for modification: %s\n", pad_path);
printf("Reason: %s\n", strerror(errno));
// Provide additional diagnostics
if (errno == EROFS) {
printf("The filesystem appears to be read-only. Check if the drive is mounted read-only.\n");
} else if (errno == EACCES) {
printf("Permission denied. Check file permissions and mount options.\n");
} else if (errno == ENOENT) {
printf("File not found. The pad file may have been moved or deleted.\n");
} else if (errno == EISDIR) {
printf("Path is a directory, not a file.\n");
} else {
printf("This may be due to filesystem limitations or mount options.\n");
}
printf("\nTroubleshooting suggestions:\n");
printf("1. Ensure the external drive is mounted read-write: mount -o remount,rw /media/teknari/OTP_01\n");
printf("2. Check file permissions: ls -la '%s'\n", pad_path);
printf("3. Verify the drive supports the required operations\n");
printf("4. Try copying the pad to local storage, enhancing it, then copying back\n");
}
close(device_fd);
return 1;
}
if (display_progress) {
printf("Streaming entropy from %s to pad...\n", device->friendly_name);
printf("Pad size: %.2f GB (%lu bytes)\n", (double)pad_size / (1024.0*1024.0*1024.0), pad_size);
printf("Enhancing entire pad with hardware entropy\n");
}
// Process pad in chunks
unsigned char buffer[64 * 1024]; // 64KB chunks
size_t bytes_processed = 0;
time_t start_time = time(NULL);
int error_occurred = 0;
while (bytes_processed < total_bytes && !error_occurred) {
size_t chunk_size = sizeof(buffer);
if (total_bytes - bytes_processed < chunk_size) {
chunk_size = total_bytes - bytes_processed;
}
// Read entropy from device
ssize_t entropy_read = read(device_fd, buffer, chunk_size);
if (entropy_read < 0) {
if (errno == EINTR) {
continue; // Interrupted, try again
}
if (display_progress) {
printf("Error: Failed to read from TrueRNG device: %s\n", strerror(errno));
printf("Device may have been disconnected during operation.\n");
}
error_occurred = 1;
break;
}
if (entropy_read == 0) {
if (display_progress) {
printf("Error: TrueRNG device returned no data (device disconnected?)\n");
}
error_occurred = 1;
break;
}
// Read current pad data at this position
if (fseek(pad_file, bytes_processed, SEEK_SET) != 0) {
if (display_progress) {
printf("Error: Cannot seek to position %zu in pad file\n", bytes_processed);
}
error_occurred = 1;
break;
}
unsigned char pad_data[64 * 1024];
size_t pad_read = fread(pad_data, 1, entropy_read, pad_file);
if (pad_read != (size_t)entropy_read) {
if (display_progress) {
printf("Error: Cannot read pad data at position %zu\n", bytes_processed);
}
error_occurred = 1;
break;
}
// XOR entropy with existing pad data
for (size_t i = 0; i < (size_t)entropy_read; i++) {
pad_data[i] ^= buffer[i];
}
// Seek back and write modified data
if (fseek(pad_file, bytes_processed, SEEK_SET) != 0) {
if (display_progress) {
printf("Error: Cannot seek back to position %zu in pad file\n", bytes_processed);
}
error_occurred = 1;
break;
}
if (fwrite(pad_data, 1, entropy_read, pad_file) != (size_t)entropy_read) {
if (display_progress) {
printf("Error: Cannot write modified pad data\n");
}
error_occurred = 1;
break;
}
bytes_processed += entropy_read;
// Show progress for large pads
if (display_progress && bytes_processed % (64 * 1024 * 1024) == 0) { // Every 64MB
show_progress(bytes_processed, total_bytes, start_time);
}
}
close(device_fd);
fclose(pad_file);
if (error_occurred) {
return 1;
}
if (display_progress) {
show_progress(total_bytes, total_bytes, start_time);
printf("\n✓ Successfully streamed %zu bytes of hardware entropy to pad\n", bytes_processed);
}
return 0;
}
// Detect all available hardware RNG devices
int detect_all_hardware_rng_devices(hardware_rng_device_t* devices, int max_devices, int* num_devices_found) {
*num_devices_found = 0;
// Scan /dev directory for serial devices (ttyUSB*, ttyACM*)
DIR* dev_dir = opendir("/dev");
if (!dev_dir) {
return 1; // Error opening /dev
}
struct dirent* entry;
while ((entry = readdir(dev_dir)) != NULL && *num_devices_found < max_devices) {
// Check for serial device patterns
if (strncmp(entry->d_name, "ttyUSB", 6) == 0 || strncmp(entry->d_name, "ttyACM", 6) == 0) {
char device_path[512]; // Increased buffer size to prevent truncation
int ret = snprintf(device_path, sizeof(device_path), "/dev/%s", entry->d_name);
if (ret >= (int)sizeof(device_path)) {
continue; // Skip if path would be truncated
}
// Check if this is a TrueRNG/SwiftRNG device by reading VID/PID
char vid[5], pid[5];
if (read_usb_device_info(device_path, vid, pid) == 0) {
hardware_rng_device_type_t device_type = 0;
// Check against known TrueRNG VID/PID combinations
if (strcmp(vid, TRUERNG_VID) == 0 && strcmp(pid, TRUERNG_ORIGINAL_PID) == 0) {
device_type = TRUERNG_ORIGINAL;
} else if (strcmp(vid, TRUERNG_VID) == 0 && strcmp(pid, TRUERNG_PRO_PID) == 0) {
device_type = TRUERNG_PRO;
} else if (strcmp(vid, TRUERNG_VID) == 0 && strcmp(pid, TRUERNG_PRO_V2_PID) == 0) {
device_type = TRUERNG_PRO_V2;
}
if (device_type != 0) {
// Found a TrueRNG/SwiftRNG device
hardware_rng_device_t* device = &devices[*num_devices_found];
strncpy(device->port_path, device_path, sizeof(device->port_path) - 1);
device->device_type = device_type;
strncpy(device->friendly_name, get_truerng_device_name(device_type), sizeof(device->friendly_name) - 1);
// Assume device is working if VID/PID matches (no test needed)
device->is_working = 1;
(*num_devices_found)++;
}
}
}
}
closedir(dev_dir);
return 0; // Success
}
// Configure serial port for different RNG device types
int configure_rng_serial_port(int fd, hardware_rng_device_type_t device_type) {
(void)device_type; // Suppress unused parameter warning - all TrueRNG devices use same config
struct termios tty;
if (tcgetattr(fd, &tty) != 0) {
return 1; // Error getting terminal attributes
}
// TrueRNG configuration - traditional serial settings
// TrueRNG devices: 115200 baud, 8N1, no flow control
cfsetospeed(&tty, B115200);
cfsetispeed(&tty, B115200);
tty.c_cflag = (tty.c_cflag & ~CSIZE) | CS8; // 8-bit chars
tty.c_cflag |= CLOCAL | CREAD; // ignore modem controls, enable reading
tty.c_cflag &= ~(PARENB | PARODD); // no parity
tty.c_cflag &= ~CSTOPB; // 1 stop bit
tty.c_cflag &= ~CRTSCTS; // no hardware flow control
tty.c_iflag &= ~(IXON | IXOFF | IXANY); // no software flow control
tty.c_iflag &= ~(ICANON | ECHO | ECHOE | ISIG); // raw mode
tty.c_oflag &= ~OPOST; // raw output
// Set timeouts for TrueRNG
tty.c_cc[VMIN] = 1; // read at least 1 character
tty.c_cc[VTIME] = 10; // 1 second timeout
if (tcsetattr(fd, TCSANOW, &tty) != 0) {
return 1; // Error setting terminal attributes
}
// Flush any existing data
tcflush(fd, TCIOFLUSH);
return 0; // Success
}
// Collect entropy from a specific TrueRNG device
int collect_truerng_entropy_from_device(const hardware_rng_device_t* device, unsigned char* entropy_buffer,
size_t target_bytes, size_t* collected_bytes, int display_progress) {
if (!device || !entropy_buffer || !collected_bytes || target_bytes == 0) {
return 1; // Invalid parameters
}
// Open the TrueRNG device
int device_fd = open(device->port_path, O_RDONLY | O_NOCTTY);
if (device_fd < 0) {
if (display_progress) {
printf("Error: Cannot open RNG device %s: %s\n", device->port_path, strerror(errno));
}
return 1;
}
// Configure serial port for this device type
if (configure_rng_serial_port(device_fd, device->device_type) != 0) {
if (display_progress) {
printf("Error: Failed to configure serial port for %s\n", device->friendly_name);
}
close(device_fd);
return 1;
}
// Standard delay for TrueRNG devices
usleep(100000); // 100ms
if (display_progress) {
printf("Collecting %zu bytes from %s...\n", target_bytes, device->friendly_name);
}
// Read entropy data with timeout protection
size_t total_read = 0;
time_t start_time = time(NULL);
time_t last_progress_time = start_time;
while (total_read < target_bytes) {
// Check for overall timeout (5 minutes max for large collections)
time_t current_time = time(NULL);
if (difftime(current_time, start_time) > 300) { // 5 minutes timeout
if (display_progress) {
printf("Error: Collection timeout - device may be unresponsive\n");
}
close(device_fd);
return 1;
}
size_t remaining = target_bytes - total_read;
size_t chunk_size = (remaining > 4096) ? 4096 : remaining; // Read in 4KB chunks
ssize_t bytes_read = read(device_fd, entropy_buffer + total_read, chunk_size);
if (bytes_read < 0) {
if (errno == EINTR) {
continue; // Interrupted, try again
}
if (errno == EAGAIN || errno == EWOULDBLOCK) {
// Timeout occurred, check if we have enough data for a test
if (total_read > 0 && target_bytes > 1024) {
// For testing purposes, we have enough data
break;
}
// For small collections, this is an error
if (display_progress) {
printf("Error: Device read timeout - no data received\n");
}
close(device_fd);
return 1;
}
if (display_progress) {
printf("Error: Failed to read from TrueRNG device: %s\n", strerror(errno));
printf("Device may have been disconnected.\n");
}
close(device_fd);
return 1;
}
if (bytes_read == 0) {
// End of data - this shouldn't happen for RNG devices
if (total_read == 0) {
if (display_progress) {
printf("Error: TrueRNG device returned no data (device disconnected or misconfigured?)\n");
}
close(device_fd);
return 1;
} else {
// We have some data, might be enough for testing
break;
}
}
total_read += bytes_read;
// Show progress
if (display_progress && (total_read % 1024 == 0 || difftime(current_time, last_progress_time) >= 1)) {
show_progress(total_read, target_bytes, start_time);
last_progress_time = current_time;
}
}
close(device_fd);
if (display_progress) {
show_progress(target_bytes, target_bytes, start_time);
printf("\n✓ Successfully collected %zu bytes from TrueRNG device\n", total_read);
}
*collected_bytes = total_read;
return 0;
}
// Read USB device VID/PID information from sysfs
int read_usb_device_info(const char* device_path, char* vid, char* pid) {
// Extract device name from path (e.g., /dev/ttyUSB0 -> ttyUSB0)
const char* device_name = strrchr(device_path, '/');
if (!device_name) device_name = device_path;
else device_name++; // Skip the '/'
// Construct sysfs path for USB device info
char sysfs_path[256];
snprintf(sysfs_path, sizeof(sysfs_path), "/sys/class/tty/%s/device/../idVendor", device_name);
FILE* vid_file = fopen(sysfs_path, "r");
if (!vid_file) {
return 1; // Cannot read VID
}
if (fscanf(vid_file, "%4s", vid) != 1) {
fclose(vid_file);
return 1; // Cannot parse VID
}
fclose(vid_file);
// Read PID
snprintf(sysfs_path, sizeof(sysfs_path), "/sys/class/tty/%s/device/../idProduct", device_name);
FILE* pid_file = fopen(sysfs_path, "r");
if (!pid_file) {
return 1; // Cannot read PID
}
if (fscanf(pid_file, "%4s", pid) != 1) {
fclose(pid_file);
return 1; // Cannot parse PID
}
fclose(pid_file);
return 0; // Success
}
// Get friendly name for hardware RNG device type
const char* get_truerng_device_name(hardware_rng_device_type_t device_type) {
switch (device_type) {
case TRUERNG_ORIGINAL:
return "TrueRNG";
case TRUERNG_PRO:
return "TrueRNG Pro";
case TRUERNG_PRO_V2:
return "TrueRNG Pro V2";
default:
return "Unknown Hardware RNG Device";
}
}
// Test if a hardware RNG device is working by attempting to read from it
int test_hardware_rng_device(const hardware_rng_device_t* device) {
int fd = open(device->port_path, O_RDONLY | O_NONBLOCK);
if (fd < 0) {
return 1; // Cannot open device
}
// Try to read a small amount of data
unsigned char test_buffer[16];
ssize_t bytes_read = read(fd, test_buffer, sizeof(test_buffer));
close(fd);
if (bytes_read <= 0) {
return 1; // Cannot read from device
}
return 0; // Device appears to be working
}
// Interactive device selection for hardware RNG
int select_hardware_rng_device_interactive(hardware_rng_device_t* devices, int num_devices, hardware_rng_device_t* selected_device) {
if (num_devices == 0) {
printf("No hardware RNG devices found.\n");
return 1; // No devices available
}
if (num_devices == 1) {
// Only one device, use it automatically
*selected_device = devices[0];
printf("Using %s (%s)\n\n", devices[0].friendly_name, devices[0].port_path);
return 0;
}
// Multiple devices - let user choose
printf("\nAvailable Hardware RNG Devices:\n");
for (int i = 0; i < num_devices; i++) {
printf("%d. %s (%s)\n",
i + 1,
devices[i].friendly_name,
devices[i].port_path);
}
printf("\nSelect device (1-%d): ", num_devices);
char input[10];
if (fgets(input, sizeof(input), stdin) == NULL) {
return 1; // Input error
}
int choice = atoi(input);
if (choice < 1 || choice > num_devices) {
printf("Invalid selection.\n");
return 1;
}
*selected_device = devices[choice - 1];
printf("Selected: %s (%s)\n", selected_device->friendly_name, selected_device->port_path);
return 0;
}

503
src/ui.c Normal file
View File

@@ -0,0 +1,503 @@
#define _POSIX_C_SOURCE 200809L
#define _DEFAULT_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <unistd.h>
#include <sys/stat.h>
#include <sys/statvfs.h>
#include <sys/ioctl.h>
#include <dirent.h>
#include <time.h>
#include <ctype.h>
#include <termios.h>
#include <fcntl.h>
#include <math.h>
#include "otp.h"
// Initialize terminal dimensions
void init_terminal_dimensions(void) {
struct winsize ws;
// Try to get actual terminal size
if (ioctl(STDOUT_FILENO, TIOCGWINSZ, &ws) == 0 && ws.ws_col > 0 && ws.ws_row > 0) {
set_terminal_dimensions(ws.ws_col, ws.ws_row);
}
// If ioctl fails, keep the default values (80x24)
}
// Print centered header with = padding, screen clearing, and optional pause
void print_centered_header(const char* text, int pause_before_clear) {
if (!text) return;
// Phase 1: Pause if requested
if (pause_before_clear) {
printf("\nPress Enter to continue...");
fflush(stdout);
// Wait for Enter key
int c;
while ((c = getchar()) != '\n' && c != EOF) {
// Consume any extra characters until newline
}
}
// Phase 2: Clear screen using terminal height
for (int i = 0; i < get_terminal_height(); i++) {
printf("\n");
}
// Phase 3: Display centered header (existing logic)
int text_len = strlen(text);
int available_width = get_terminal_width();
// Ensure minimum spacing: at least 1 space on each side
int min_required = text_len + 4; // text + " " + text + " " (spaces around text)
if (available_width < min_required) {
// Terminal too narrow - just print the text with minimal formatting
printf("=== %s ===\n", text);
return;
}
// Calculate padding
int total_padding = available_width - text_len - 2; // -2 for spaces around text
int left_padding = total_padding / 2;
int right_padding = total_padding - left_padding;
// Print the header
for (int i = 0; i < left_padding; i++) {
printf("=");
}
printf(" %s ", text);
for (int i = 0; i < right_padding; i++) {
printf("=");
}
printf("\n");
}
// Interactive mode main loop
int interactive_mode(void) {
char input[10];
printf("\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n");
while (1) {
show_main_menu();
if (!fgets(input, sizeof(input), stdin)) {
printf("Goodbye!\n");
break;
}
char choice = toupper(input[0]);
switch (choice) {
case 'T':
handle_text_encrypt();
break;
case 'F':
handle_file_encrypt();
break;
case 'D':
handle_decrypt_menu();
break;
case 'P':
handle_pads_menu();
break;
case 'X':
case 'Q':
printf("Goodbye!\n");
return 0;
default:
printf("Invalid choice. Please try again.\n");
break;
}
}
return 0;
}
void show_main_menu(void) {
printf("\n");
print_centered_header("Main Menu - OTP v0.3.16", 0);
printf("\n");
printf(" \033[4mT\033[0mext encrypt\n"); //TEXT ENCRYPT
printf(" \033[4mF\033[0mile encrypt\n"); //FILE ENCRYPT
printf(" \033[4mD\033[0mecrypt\n"); //DECRYPT
printf(" \033[4mP\033[0mads\n"); //PADS
printf(" E\033[4mx\033[0mit\n"); //EXIT
printf("\nSelect option: ");
}
int handle_generate_menu(void) {
printf("\n");
print_centered_header("Generate New Pad", 0);
printf("Enter pad size (examples: 1GB, 5TB, 512MB, 2048): ");
char size_input[64];
if (!fgets(size_input, sizeof(size_input), stdin)) {
printf("Error: Failed to read input\n");
return 1;
}
size_input[strcspn(size_input, "\n")] = 0;
uint64_t size = parse_size_string(size_input);
if (size == 0) {
printf("Error: Invalid size format\n");
return 1;
}
double size_gb = (double)size / (1024.0 * 1024.0 * 1024.0);
printf("Generating %.2f GB pad...\n", size_gb);
printf("Note: Use 'Add entropy' in Pads menu to enhance randomness after creation.\n");
return generate_pad(size, 1);
}
int handle_encrypt_menu(void) {
printf("\n");
print_centered_header("Encrypt Data", 0);
printf("Available pads:\n");
char* selected = select_pad_interactive("Available pads:", "Select pad (or press Enter to continue)", PAD_FILTER_ALL, 0);
int pad_count = 1; // Assume at least 1 pad if function returned
if (selected) {
free(selected);
} else {
pad_count = 0;
}
if (pad_count == 0) {
printf("No pads available. Generate a pad first.\n");
return 1;
}
// Ask user to choose between text and file encryption
printf("\nSelect encryption type:\n");
printf(" 1. Text message\n");
printf(" 2. File\n");
printf("Enter choice (1-2): ");
char choice_input[10];
if (!fgets(choice_input, sizeof(choice_input), stdin)) {
printf("Error: Failed to read input\n");
return 1;
}
int choice = atoi(choice_input);
if (choice == 1) {
// Text encryption - use unified pad selection
char* selected_pad = select_pad_interactive("Select Pad for Text Encryption",
"Select pad (by prefix)",
PAD_FILTER_ALL, 1);
if (!selected_pad) {
printf("Text encryption cancelled.\n");
return 1;
}
int result = encrypt_text(selected_pad, NULL); // NULL for interactive mode
free(selected_pad);
return result;
}
else if (choice == 2) {
// File encryption
printf("\nFile selection options:\n");
printf(" 1. Type file path directly\n");
printf(" 2. Use file manager\n");
printf("Enter choice (1-2): ");
char file_choice[10];
char input_file[512];
if (!fgets(file_choice, sizeof(file_choice), stdin)) {
printf("Error: Failed to read input\n");
return 1;
}
if (atoi(file_choice) == 2) {
// Use file manager
if (launch_file_manager(".", input_file, sizeof(input_file)) != 0) {
printf("Falling back to manual file path entry.\n");
printf("Enter input file path: ");
if (!fgets(input_file, sizeof(input_file), stdin)) {
printf("Error: Failed to read input\n");
return 1;
}
input_file[strcspn(input_file, "\n")] = 0;
}
} else {
// Direct file path input
printf("Enter input file path: ");
if (!fgets(input_file, sizeof(input_file), stdin)) {
printf("Error: Failed to read input\n");
return 1;
}
input_file[strcspn(input_file, "\n")] = 0;
}
// Check if file exists
if (access(input_file, R_OK) != 0) {
printf("Error: File '%s' not found or cannot be read\n", input_file);
return 1;
}
// Use unified pad selection
char* selected_pad = select_pad_interactive("Select Pad for File Encryption",
"Select pad (by prefix)",
PAD_FILTER_ALL, 1);
if (!selected_pad) {
printf("File encryption cancelled.\n");
return 1;
}
// Ask for output format
printf("\nSelect output format:\n");
printf(" 1. Binary (.otp) - preserves file permissions\n");
printf(" 2. ASCII (.otp.asc) - text-safe format\n");
printf("Enter choice (1-2): ");
char format_input[10];
if (!fgets(format_input, sizeof(format_input), stdin)) {
printf("Error: Failed to read input\n");
return 1;
}
int ascii_armor = (atoi(format_input) == 2) ? 1 : 0;
// Generate default output filename with files directory and use enhanced input function
char default_output[1024]; // Increased size to prevent truncation warnings
char temp_default[1024];
// Generate base filename with appropriate extension
if (ascii_armor) {
snprintf(temp_default, sizeof(temp_default), "%s.otp.asc", input_file);
} else {
snprintf(temp_default, sizeof(temp_default), "%s.otp", input_file);
}
// Apply files directory default path
get_default_file_path(temp_default, default_output, sizeof(default_output));
char output_file[512];
if (get_filename_with_default("Output filename:", default_output, output_file, sizeof(output_file)) != 0) {
printf("Error: Failed to read input\n");
return 1;
}
const char* output_filename = output_file;
int result = encrypt_file(selected_pad, input_file, output_filename, ascii_armor);
free(selected_pad);
return result;
}
else {
printf("Invalid choice. Please enter 1 or 2.\n");
return 1;
}
}
int handle_decrypt_menu(void) {
printf("\n");
print_centered_header("Smart Decrypt", 0);
printf("Enter encrypted data (paste ASCII armor), file path, or press Enter to browse files:\n");
char input_line[MAX_LINE_LENGTH];
if (!fgets(input_line, sizeof(input_line), stdin)) {
printf("Error: Failed to read input\n");
return 1;
}
// Remove newline
input_line[strcspn(input_line, "\n")] = 0;
if (strlen(input_line) == 0) {
// Empty input - launch file manager to browse for files
char selected_file[512];
if (launch_file_manager(get_files_directory(), selected_file, sizeof(selected_file)) != 0) {
printf("Error: Could not launch file manager\n");
return 1;
}
// Generate smart default output filename with files directory and use enhanced input function
char temp_default[512];
char default_output[512];
strncpy(temp_default, selected_file, sizeof(temp_default) - 1);
temp_default[sizeof(temp_default) - 1] = '\0';
// Remove common encrypted extensions to get a better default
if (strstr(temp_default, ".otp.asc")) {
// Replace .otp.asc with original extension or no extension
char* ext_pos = strstr(temp_default, ".otp.asc");
*ext_pos = '\0';
} else if (strstr(temp_default, ".otp")) {
// Replace .otp with original extension or no extension
char* ext_pos = strstr(temp_default, ".otp");
*ext_pos = '\0';
} else {
// No recognized encrypted extension, add .decrypted suffix
strncat(temp_default, ".decrypted", sizeof(temp_default) - strlen(temp_default) - 1);
}
// Apply files directory default path
get_default_file_path(temp_default, default_output, sizeof(default_output));
char output_file[512];
if (get_filename_with_default("Output filename:", default_output, output_file, sizeof(output_file)) != 0) {
printf("Error: Failed to read input\n");
return 1;
}
return decrypt_file(selected_file, output_file);
}
else if (strncmp(input_line, "-----BEGIN OTP MESSAGE-----", 27) == 0) {
// Looks like ASCII armor - collect the full message
char full_message[MAX_INPUT_SIZE * 4] = {0};
strcat(full_message, input_line);
strcat(full_message, "\n");
printf("Continue pasting the message (end with -----END OTP MESSAGE-----):\n");
char line[MAX_LINE_LENGTH];
while (fgets(line, sizeof(line), stdin)) {
strncat(full_message, line, sizeof(full_message) - strlen(full_message) - 1);
if (strstr(line, "-----END OTP MESSAGE-----")) {
break;
}
}
return decrypt_text(NULL, full_message);
}
else {
// Check if it looks like a file path
if (access(input_line, R_OK) == 0) {
// It's a valid file - decrypt it with enhanced input for output filename
char temp_default[512];
char default_output[512];
strncpy(temp_default, input_line, sizeof(temp_default) - 1);
temp_default[sizeof(temp_default) - 1] = '\0';
// Remove common encrypted extensions to get a better default
if (strstr(temp_default, ".otp.asc")) {
// Replace .otp.asc with original extension or no extension
char* ext_pos = strstr(temp_default, ".otp.asc");
*ext_pos = '\0';
} else if (strstr(temp_default, ".otp")) {
// Replace .otp with original extension or no extension
char* ext_pos = strstr(temp_default, ".otp");
*ext_pos = '\0';
} else {
// No recognized encrypted extension, add .decrypted suffix
strncat(temp_default, ".decrypted", sizeof(temp_default) - strlen(temp_default) - 1);
}
// Apply files directory default path
get_default_file_path(temp_default, default_output, sizeof(default_output));
char output_file[512];
if (get_filename_with_default("Output filename:", default_output, output_file, sizeof(output_file)) != 0) {
printf("Error: Failed to read input\n");
return 1;
}
return decrypt_file(input_line, output_file);
} else {
printf("Input not recognized as ASCII armor or valid file path.\n");
return 1;
}
}
}
int handle_text_encrypt(void) {
printf("\n");
print_centered_header("Text Encrypt", 0);
// Launch text editor directly
char text_buffer[MAX_INPUT_SIZE];
if (launch_text_editor(NULL, text_buffer, sizeof(text_buffer)) != 0) {
printf("Error: Could not launch text editor\n");
return 1;
}
if (strlen(text_buffer) == 0) {
printf("No text entered - canceling encryption\n");
return 1;
}
// Use unified pad selection
char* selected_pad = select_pad_interactive("Select Pad for Text Encryption",
"Select pad (by prefix)",
PAD_FILTER_ALL, 1);
if (!selected_pad) {
printf("Text encryption cancelled.\n");
return 1;
}
int result = encrypt_text(selected_pad, text_buffer);
free(selected_pad);
return result;
}
int handle_file_encrypt(void) {
printf("\n");
print_centered_header("File Encrypt", 0);
// Launch file manager directly
char input_file[512];
if (launch_file_manager(".", input_file, sizeof(input_file)) != 0) {
printf("Error: Could not launch file manager\n");
return 1;
}
// Check if file exists
if (access(input_file, R_OK) != 0) {
printf("Error: File '%s' not found or cannot be read\n", input_file);
return 1;
}
// Use unified pad selection
char* selected_pad = select_pad_interactive("Select Pad for File Encryption",
"Select pad (by prefix)",
PAD_FILTER_ALL, 1);
if (!selected_pad) {
printf("File encryption cancelled.\n");
return 1;
}
// Ask for output format
printf("\nSelect output format:\n");
printf(" 1. Binary (.otp) - preserves file permissions\n");
printf(" 2. ASCII (.otp.asc) - text-safe format\n");
printf("Enter choice (1-2): ");
char format_input[10];
if (!fgets(format_input, sizeof(format_input), stdin)) {
printf("Error: Failed to read input\n");
return 1;
}
int ascii_armor = (atoi(format_input) == 2) ? 1 : 0;
// Generate default output filename
char default_output[1024]; // Increased buffer size to prevent truncation warnings
if (ascii_armor) {
snprintf(default_output, sizeof(default_output), "%s.otp.asc", input_file);
} else {
snprintf(default_output, sizeof(default_output), "%s.otp", input_file);
}
// Use enhanced input function for output filename
char output_file[512];
if (get_filename_with_default("Output filename:", default_output, output_file, sizeof(output_file)) != 0) {
printf("Error: Failed to read input\n");
return 1;
}
const char* output_filename = output_file;
int result = encrypt_file(selected_pad, input_file, output_filename, ascii_armor);
free(selected_pad);
return result;
}

1041
src/util.c Normal file

File diff suppressed because it is too large Load Diff

27
test.sh
View File

@@ -1,27 +0,0 @@
#!/bin/bash
echo "Testing OTP Cipher Implementation"
echo "================================="
# Test 1: Generate a pad
echo "Test 1: Generating pad..."
./otp generate test 2
echo
# Test 2: Check if files were created
echo "Test 2: Checking generated files..."
ls -la test.pad test.state
echo
# Test 3: Test encryption
echo "Test 3: Testing encryption..."
echo "Secret Message" | ./otp encrypt test > encrypted_output.txt
cat encrypted_output.txt
echo
# Test 4: Test decryption
echo "Test 4: Testing decryption..."
cat encrypted_output.txt | ./otp decrypt test
echo
echo "Tests completed!"

23
tests/temp_device_test.c Normal file
View File

@@ -0,0 +1,23 @@
#include <stdio.h>
#include <stdlib.h>
#include "include/otp.h"
int main(int argc, char* argv[]) {
(void)argc; (void)argv;
hardware_rng_device_t devices[10];
int num_devices_found = 0;
if (detect_all_hardware_rng_devices(devices, 10, &num_devices_found) != 0) {
printf("ERROR: Device detection failed\n");
return 1;
}
printf("DEVICES_FOUND:%d\n", num_devices_found);
for (int i = 0; i < num_devices_found; i++) {
printf("DEVICE:%d:%s:%d:%s\n", i, devices[i].port_path, devices[i].device_type, devices[i].friendly_name);
}
return 0;
}

499
tests/test.sh Executable file
View File

@@ -0,0 +1,499 @@
#!/bin/bash
# Hardware RNG Device Testing Script
# Tests all three detected hardware RNG devices for functionality
# Author: OTP Cipher Implementation
# Version: 1.0
set -e # Exit on any error
echo "========================================================================"
echo "Hardware RNG Device Testing Script - OTP Cipher v0.3.16"
echo "========================================================================"
echo
# Colors for output
RED='\033[0;31m'
GREEN='\033[0;32m'
YELLOW='\033[1;33m'
BLUE='\033[0;34m'
NC='\033[0m' # No Color
# Test counters
TOTAL_TESTS=0
PASSED_TESTS=0
FAILED_TESTS=0
# Function to print test results
print_result() {
local test_name="$1"
local result="$2"
local details="$3"
TOTAL_TESTS=$((TOTAL_TESTS + 1))
if [ "$result" = "PASS" ]; then
echo -e "${GREEN}✓ PASS${NC}: $test_name"
PASSED_TESTS=$((PASSED_TESTS + 1))
elif [ "$result" = "FAIL" ]; then
echo -e "${RED}✗ FAIL${NC}: $test_name"
FAILED_TESTS=$((FAILED_TESTS + 1))
if [ -n "$details" ]; then
echo -e " ${RED}Error:${NC} $details"
fi
elif [ "$result" = "SKIP" ]; then
echo -e "${YELLOW}⚠ SKIP${NC}: $test_name"
if [ -n "$details" ]; then
echo -e " ${YELLOW}Reason:${NC} $details"
fi
fi
}
# Function to test device detection
test_device_detection() {
echo -e "${BLUE}=== Device Detection Tests ===${NC}"
echo
# Test 1: Check if devices are detected
echo "Scanning for hardware RNG devices..."
# Create a temporary test program to check device detection
cat > temp_device_test.c << 'EOF'
#include <stdio.h>
#include <stdlib.h>
#include "include/otp.h"
int main(int argc, char* argv[]) {
(void)argc; (void)argv; // Suppress unused parameter warnings
hardware_rng_device_t devices[10];
int num_devices_found = 0;
if (detect_all_hardware_rng_devices(devices, 10, &num_devices_found) != 0) {
printf("ERROR: Device detection failed\n");
return 1;
}
printf("DEVICES_FOUND:%d\n", num_devices_found);
for (int i = 0; i < num_devices_found; i++) {
printf("DEVICE:%d:%s:%d:%s\n", i, devices[i].port_path, devices[i].device_type, devices[i].friendly_name);
}
return 0;
}
EOF
# Compile the test program
if gcc -Wall -Wextra -std=c99 -Iinclude -o temp_device_test temp_device_test.c src/trng.o src/util.o src/state.o src/pads.o src/crypto.o src/entropy.o src/ui.o nostr_chacha20.o -lm 2>/dev/null; then
# Run device detection
DEVICE_OUTPUT=$(./temp_device_test 2>/dev/null)
DEVICE_COUNT=$(echo "$DEVICE_OUTPUT" | grep "DEVICES_FOUND:" | cut -d: -f2)
if [ "$DEVICE_COUNT" -gt 0 ]; then
print_result "Hardware RNG device detection" "PASS" "Found $DEVICE_COUNT devices"
# Parse device information
echo "$DEVICE_OUTPUT" | grep "DEVICE:" | while IFS=: read -r prefix index port_path device_type friendly_name; do
echo " Device $index: $friendly_name at $port_path (Type: $device_type)"
done
echo
# Store device info for later tests
echo "$DEVICE_OUTPUT" > temp_devices.txt
else
print_result "Hardware RNG device detection" "FAIL" "No devices found"
echo " Expected devices: TrueRNG, SwiftRNG variants"
echo " Check USB connections and device permissions"
echo
fi
# Clean up
rm -f temp_device_test temp_device_test.c
else
print_result "Device detection compilation" "FAIL" "Could not compile test program"
fi
}
# Function to test individual device connectivity
test_device_connectivity() {
echo -e "${BLUE}=== Device Connectivity Tests ===${NC}"
echo
if [ ! -f temp_devices.txt ]; then
print_result "Device connectivity tests" "SKIP" "No devices detected in previous test"
return
fi
DEVICE_COUNT=$(grep "DEVICES_FOUND:" temp_devices.txt | cut -d: -f2)
if [ "$DEVICE_COUNT" -eq 0 ]; then
print_result "Device connectivity tests" "SKIP" "No devices available for testing"
return
fi
# Test each detected device
grep "DEVICE:" temp_devices.txt | while IFS=: read -r prefix index port_path device_type friendly_name; do
echo "Testing device: $friendly_name at $port_path"
# Create device-specific test
cat > temp_connectivity_test.c << 'EOF'
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <time.h>
#include "include/otp.h"
int main(int argc, char* argv[]) {
if (argc != 4) {
printf("Usage: %s <port_path> <device_type> <friendly_name>\n", argv[0]);
return 1;
}
hardware_rng_device_t device;
snprintf(device.port_path, sizeof(device.port_path), "%s", argv[1]);
device.device_type = atoi(argv[2]);
snprintf(device.friendly_name, sizeof(device.friendly_name), "%s", argv[3]);
device.is_working = 0;
// Test with small buffer (1KB) and short timeout
const size_t test_bytes = 1024;
unsigned char* test_buffer = malloc(test_bytes);
if (!test_buffer) {
printf("ERROR: Cannot allocate test buffer\n");
return 1;
}
size_t collected = 0;
time_t start_time = time(NULL);
printf("TESTING:%s\n", device.friendly_name);
// Test device connectivity with timeout
int result = collect_truerng_entropy_from_device(&device, test_buffer, test_bytes, &collected, 0);
time_t end_time = time(NULL);
double test_duration = difftime(end_time, start_time);
if (result == 0 && collected > 0) {
double speed_kbps = (collected / 1024.0) / (test_duration > 0 ? test_duration : 1.0);
printf("SUCCESS:%zu:%0.2f:%0.2f\n", collected, test_duration, speed_kbps);
} else {
printf("FAILED:%d:%zu:%0.2f\n", result, collected, test_duration);
}
free(test_buffer);
return 0;
}
EOF
# Compile and run connectivity test
if gcc -Wall -Wextra -std=c99 -Iinclude -o temp_connectivity_test temp_connectivity_test.c src/trng.o src/util.o src/state.o src/pads.o src/crypto.o src/entropy.o src/ui.o nostr_chacha20.o -lm 2>/dev/null; then
# Run test with timeout to prevent hanging
CONNECTIVITY_OUTPUT=$(timeout 30s ./temp_connectivity_test "$port_path" "$device_type" "$friendly_name" 2>/dev/null || echo "TIMEOUT")
if echo "$CONNECTIVITY_OUTPUT" | grep -q "SUCCESS:"; then
# Parse success output
SUCCESS_LINE=$(echo "$CONNECTIVITY_OUTPUT" | grep "SUCCESS:")
COLLECTED=$(echo "$SUCCESS_LINE" | cut -d: -f2)
DURATION=$(echo "$SUCCESS_LINE" | cut -d: -f3)
SPEED=$(echo "$SUCCESS_LINE" | cut -d: -f4)
print_result "Device connectivity: $friendly_name" "PASS" "Collected ${COLLECTED} bytes in ${DURATION}s (${SPEED} KB/s)"
elif echo "$CONNECTIVITY_OUTPUT" | grep -q "FAILED:"; then
# Parse failure output
FAILED_LINE=$(echo "$CONNECTIVITY_OUTPUT" | grep "FAILED:")
ERROR_CODE=$(echo "$FAILED_LINE" | cut -d: -f2)
COLLECTED=$(echo "$FAILED_LINE" | cut -d: -f3)
print_result "Device connectivity: $friendly_name" "FAIL" "Error code $ERROR_CODE, collected $COLLECTED bytes"
elif echo "$CONNECTIVITY_OUTPUT" | grep -q "TIMEOUT"; then
print_result "Device connectivity: $friendly_name" "FAIL" "Test timed out after 30 seconds"
else
print_result "Device connectivity: $friendly_name" "FAIL" "Unexpected test output"
fi
else
print_result "Device connectivity test compilation: $friendly_name" "FAIL" "Could not compile test program"
fi
echo
done
# Clean up
rm -f temp_connectivity_test temp_connectivity_test.c
}
# Function to test device configuration
test_device_configuration() {
echo -e "${BLUE}=== Device Configuration Tests ===${NC}"
echo
if [ ! -f temp_devices.txt ]; then
print_result "Device configuration tests" "SKIP" "No devices detected"
return
fi
# Test serial port configuration for each device type
grep "DEVICE:" temp_devices.txt | while IFS=: read -r prefix index port_path device_type friendly_name; do
echo "Testing serial configuration for: $friendly_name"
# Create configuration test
cat > temp_config_test.c << 'EOF'
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <unistd.h>
#include <termios.h>
#include "include/otp.h"
int main(int argc, char* argv[]) {
if (argc != 3) {
printf("Usage: %s <port_path> <device_type>\n", argv[0]);
return 1;
}
const char* port_path = argv[1];
hardware_rng_device_type_t device_type = atoi(argv[2]);
printf("TESTING_CONFIG:%s:%d\n", port_path, device_type);
// Test opening the device
int fd = open(port_path, O_RDONLY | O_NOCTTY | O_NONBLOCK);
if (fd < 0) {
printf("FAILED:Cannot open device\n");
return 1;
}
// Test configuring the serial port
int config_result = configure_rng_serial_port(fd, device_type);
if (config_result == 0) {
printf("SUCCESS:Serial port configured successfully\n");
} else {
printf("FAILED:Serial port configuration failed\n");
}
close(fd);
return 0;
}
EOF
# Compile and run configuration test
if gcc -Wall -Wextra -std=c99 -Iinclude -o temp_config_test temp_config_test.c src/trng.o src/util.o src/state.o src/ui.o -lm 2>/dev/null; then
CONFIG_OUTPUT=$(./temp_config_test "$port_path" "$device_type" 2>/dev/null || echo "ERROR")
if echo "$CONFIG_OUTPUT" | grep -q "SUCCESS:"; then
print_result "Serial configuration: $friendly_name" "PASS" "Port configured successfully"
elif echo "$CONFIG_OUTPUT" | grep -q "FAILED:"; then
REASON=$(echo "$CONFIG_OUTPUT" | grep "FAILED:" | cut -d: -f2)
print_result "Serial configuration: $friendly_name" "FAIL" "$REASON"
else
print_result "Serial configuration: $friendly_name" "FAIL" "Unexpected configuration result"
fi
else
print_result "Configuration test compilation: $friendly_name" "FAIL" "Could not compile test program"
fi
done
echo
# Clean up
rm -f temp_config_test temp_config_test.c
}
# Function to test entropy quality
test_entropy_quality() {
echo -e "${BLUE}=== Entropy Quality Tests ===${NC}"
echo
if [ ! -f temp_devices.txt ]; then
print_result "Entropy quality tests" "SKIP" "No devices detected"
return
fi
# Test entropy quality for working devices
grep "DEVICE:" temp_devices.txt | while IFS=: read -r prefix index port_path device_type friendly_name; do
echo "Testing entropy quality for: $friendly_name"
# Create entropy quality test
cat > temp_quality_test.c << 'EOF'
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include "include/otp.h"
// Simple entropy quality check
double calculate_byte_entropy(unsigned char* data, size_t length) {
int counts[256] = {0};
double entropy = 0.0;
// Count byte frequencies
for (size_t i = 0; i < length; i++) {
counts[data[i]]++;
}
// Calculate Shannon entropy
for (int i = 0; i < 256; i++) {
if (counts[i] > 0) {
double p = (double)counts[i] / length;
entropy -= p * log2(p);
}
}
return entropy;
}
int main(int argc, char* argv[]) {
if (argc != 4) {
printf("Usage: %s <port_path> <device_type> <friendly_name>\n", argv[0]);
return 1;
}
hardware_rng_device_t device;
snprintf(device.port_path, sizeof(device.port_path), "%s", argv[1]);
device.device_type = atoi(argv[2]);
snprintf(device.friendly_name, sizeof(device.friendly_name), "%s", argv[3]);
// Test with 4KB sample
const size_t test_bytes = 4096;
unsigned char* test_buffer = malloc(test_bytes);
if (!test_buffer) {
printf("ERROR: Cannot allocate test buffer\n");
return 1;
}
size_t collected = 0;
printf("TESTING_QUALITY:%s\n", device.friendly_name);
// Collect entropy sample
int result = collect_truerng_entropy_from_device(&device, test_buffer, test_bytes, &collected, 0);
if (result == 0 && collected >= 1024) { // Need at least 1KB for meaningful analysis
double entropy = calculate_byte_entropy(test_buffer, collected);
double entropy_percentage = (entropy / 8.0) * 100.0; // Max entropy is 8 bits per byte
if (entropy_percentage >= 95.0) {
printf("EXCELLENT:%0.2f:%zu\n", entropy_percentage, collected);
} else if (entropy_percentage >= 85.0) {
printf("GOOD:%0.2f:%zu\n", entropy_percentage, collected);
} else if (entropy_percentage >= 70.0) {
printf("FAIR:%0.2f:%zu\n", entropy_percentage, collected);
} else {
printf("POOR:%0.2f:%zu\n", entropy_percentage, collected);
}
} else {
printf("FAILED:%d:%zu\n", result, collected);
}
free(test_buffer);
return 0;
}
EOF
# Compile and run quality test
if gcc -Wall -Wextra -std=c99 -Iinclude -o temp_quality_test temp_quality_test.c src/trng.o src/util.o src/state.o src/ui.o -lm 2>/dev/null; then
QUALITY_OUTPUT=$(timeout 30s ./temp_quality_test "$port_path" "$device_type" "$friendly_name" 2>/dev/null || echo "TIMEOUT")
if echo "$QUALITY_OUTPUT" | grep -q "EXCELLENT:"; then
QUALITY_LINE=$(echo "$QUALITY_OUTPUT" | grep "EXCELLENT:")
PERCENTAGE=$(echo "$QUALITY_LINE" | cut -d: -f2)
BYTES=$(echo "$QUALITY_LINE" | cut -d: -f3)
print_result "Entropy quality: $friendly_name" "PASS" "Excellent quality (${PERCENTAGE}% entropy, ${BYTES} bytes)"
elif echo "$QUALITY_OUTPUT" | grep -q "GOOD:"; then
QUALITY_LINE=$(echo "$QUALITY_OUTPUT" | grep "GOOD:")
PERCENTAGE=$(echo "$QUALITY_LINE" | cut -d: -f2)
BYTES=$(echo "$QUALITY_LINE" | cut -d: -f3)
print_result "Entropy quality: $friendly_name" "PASS" "Good quality (${PERCENTAGE}% entropy, ${BYTES} bytes)"
elif echo "$QUALITY_OUTPUT" | grep -q "FAIR:"; then
QUALITY_LINE=$(echo "$QUALITY_OUTPUT" | grep "FAIR:")
PERCENTAGE=$(echo "$QUALITY_LINE" | cut -d: -f2)
BYTES=$(echo "$QUALITY_LINE" | cut -d: -f3)
print_result "Entropy quality: $friendly_name" "PASS" "Fair quality (${PERCENTAGE}% entropy, ${BYTES} bytes)"
elif echo "$QUALITY_OUTPUT" | grep -q "POOR:"; then
QUALITY_LINE=$(echo "$QUALITY_OUTPUT" | grep "POOR:")
PERCENTAGE=$(echo "$QUALITY_LINE" | cut -d: -f2)
BYTES=$(echo "$QUALITY_LINE" | cut -d: -f3)
print_result "Entropy quality: $friendly_name" "FAIL" "Poor quality (${PERCENTAGE}% entropy, ${BYTES} bytes)"
elif echo "$QUALITY_OUTPUT" | grep -q "FAILED:"; then
print_result "Entropy quality: $friendly_name" "FAIL" "Could not collect sufficient entropy for analysis"
elif echo "$QUALITY_OUTPUT" | grep -q "TIMEOUT"; then
print_result "Entropy quality: $friendly_name" "FAIL" "Quality test timed out"
else
print_result "Entropy quality: $friendly_name" "FAIL" "Unexpected quality test output"
fi
else
print_result "Quality test compilation: $friendly_name" "FAIL" "Could not compile test program"
fi
done
echo
# Clean up
rm -f temp_quality_test temp_quality_test.c
}
# Function to print final summary
print_summary() {
echo
echo "========================================================================"
echo -e "${BLUE}Test Summary${NC}"
echo "========================================================================"
echo "Total tests run: $TOTAL_TESTS"
echo -e "Passed: ${GREEN}$PASSED_TESTS${NC}"
echo -e "Failed: ${RED}$FAILED_TESTS${NC}"
echo -e "Success rate: $(( (PASSED_TESTS * 100) / (TOTAL_TESTS > 0 ? TOTAL_TESTS : 1) ))%"
echo
if [ $FAILED_TESTS -eq 0 ]; then
echo -e "${GREEN}🎉 All tests passed! Hardware RNG devices are working correctly.${NC}"
elif [ $PASSED_TESTS -gt $FAILED_TESTS ]; then
echo -e "${YELLOW}⚠ Some tests failed, but most devices are working.${NC}"
echo "Check the failed tests above for specific device issues."
else
echo -e "${RED}❌ Multiple test failures detected.${NC}"
echo "Hardware RNG devices may have connectivity or configuration issues."
fi
echo
}
# Main test execution
main() {
echo "Starting comprehensive hardware RNG device testing..."
echo "This will test device detection, connectivity, configuration, and entropy quality."
echo
# Ensure the OTP binary exists
if [ ! -f "./otp" ]; then
echo -e "${RED}Error: OTP binary not found. Please run 'make' first.${NC}"
exit 1
fi
# Run all test suites
test_device_detection
test_device_connectivity
test_device_configuration
test_entropy_quality
# Clean up temporary files
rm -f temp_devices.txt
# Print final summary
print_summary
}
# Run main function
main "$@"

55
tests/test_truerng.c Normal file
View File

@@ -0,0 +1,55 @@
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <time.h>
#include "include/otp.h"
int main(int argc, char* argv[]) {
(void)argc; (void)argv; // Suppress unused parameter warnings
hardware_rng_device_t device;
snprintf(device.port_path, sizeof(device.port_path), "/dev/ttyUSB0");
device.device_type = TRUERNG_ORIGINAL;
snprintf(device.friendly_name, sizeof(device.friendly_name), "TrueRNG");
device.is_working = 1;
printf("Debug: Device type set to: %d (TRUERNG_ORIGINAL should be %d)\n", device.device_type, TRUERNG_ORIGINAL);
printf("Debug: Comparison result: device.device_type == SWIFTRNG is %s\n",
(device.device_type == SWIFTRNG) ? "TRUE" : "FALSE");
// Test with small buffer (1KB) and short timeout
const size_t test_bytes = 1024;
unsigned char* test_buffer = malloc(test_bytes);
if (!test_buffer) {
printf("ERROR: Cannot allocate test buffer\n");
return 1;
}
size_t collected = 0;
time_t start_time = time(NULL);
printf("Testing TrueRNG device at %s...\n", device.port_path);
// Test device connectivity with timeout
int result = collect_truerng_entropy_from_device(&device, test_buffer, test_bytes, &collected, 1);
time_t end_time = time(NULL);
double test_duration = difftime(end_time, start_time);
if (result == 0 && collected > 0) {
double speed_kbps = (collected / 1024.0) / (test_duration > 0 ? test_duration : 1.0);
printf("SUCCESS: Collected %zu bytes in %.2f seconds (%.2f KB/s)\n", collected, test_duration, speed_kbps);
// Show first few bytes as hex
printf("First 16 bytes: ");
for (int i = 0; i < 16 && i < (int)collected; i++) {
printf("%02x ", test_buffer[i]);
}
printf("\n");
} else {
printf("FAILED: Error code %d, collected %zu bytes in %.2f seconds\n", result, collected, test_duration);
}
free(test_buffer);
return result;
}

1
true_rng Submodule

Submodule true_rng added at 52ed7af980