Compare commits

..

3 Commits

Author SHA1 Message Date
05f5d6ca4f Version v0.3.21 - Fixing errors with adding entropy to file 2025-12-18 08:34:52 -04:00
33b34bf5a5 Reupload 2025-10-09 10:45:04 -04:00
9d91ec912a Version v0.3.20 - . 2025-10-05 10:30:26 -04:00
15 changed files with 1750 additions and 107 deletions

1
.gitignore vendored
View File

@@ -5,6 +5,5 @@ Gemini.md
TropicOfCancer-HenryMiller.txt
.gitea_token
true_rng/
swiftrng/
# Auto-generated files (none currently)

46
HARDWARE_RNG_STATUS.md Normal file
View File

@@ -0,0 +1,46 @@
# Hardware RNG Implementation Status
## Overview
The OTP cipher application now includes comprehensive hardware Random Number Generator (RNG) device support with automatic detection, device identification, and graceful handling of different device types.
## Supported Devices
### ✅ Fully Supported (TrueRNG Family)
- **TrueRNG Original** (VID: 04d8, PID: f5fe)
- **TrueRNG Pro** (VID: 04d8, PID: 0aa0)
- **TrueRNG Pro V2** (VID: 04d8, PID: ebb5)
These devices work via serial port communication and are fully integrated into the entropy collection system.
### ⚠️ Detected but Not Supported (SwiftRNG Family)
- **SwiftRNG** (VID: 1fc9, PID: 8111)
SwiftRNG devices are detected and identified but cannot be used via serial port communication. They require the official SwiftRNG API with libusb-1.0 integration.
## Implementation Features
### Device Detection
- **Automatic scanning** of `/dev/ttyUSB*` and `/dev/ttyACM*` devices
- **VID/PID identification** via sysfs to distinguish device types
- **Multi-device support** with interactive selection menus
- **Real-time status indicators** showing device availability
### Device Communication
- **Optimized serial port configuration** for each device type
- **Timeout protection** to prevent hanging on unresponsive devices
- **Error handling** with clear diagnostic messages
- **Progress tracking** with speed estimation for large entropy collections
### Integration Points
- **Pad enhancement** via entropy addition to existing pads
- **Interactive menus** for device selection when multiple devices are present
- **Command-line support** for automated workflows
- **Graceful fallback** to other entropy sources when no hardware RNG is available
## Technical Implementation
### Core Functions
- `detect_all_hardware_rng_devices()` - Scans and identifies all connected devices
- `collect_truerng_entropy_from_device()` - Collects entropy from TrueRNG devices

110
README.md
View File

@@ -48,7 +48,9 @@ One-time pads can be trivially encrypted and decrypted using pencil and paper, m
- **Perfect Security**: Implements true one-time pad encryption with information-theoretic security
- **Text & File Encryption**: Supports both inline text and file encryption
- **Multiple Output Formats**: Binary (.otp) and ASCII armored (.otp.asc) file formats
- **Hardware RNG Support**: Direct entropy collection from TrueRNG USB devices with automatic detection
- **Keyboard Entropy**: Optional keyboard entropy collection for enhanced randomness
- **Modular Architecture**: Clean separation of concerns across multiple source modules
- **Short Command Flags**: Convenient single-character flags for all operations
- **Automatic Versioning**: Built-in semantic versioning with automatic patch increment
- **Multiple Build Options**: Standard and static linking builds
@@ -169,14 +171,118 @@ These files are excluded from git (.gitignore) and regenerated on each build.
```
otp/
├── build.sh # Build script with automatic versioning
├── Makefile # Traditional make build system
├── otp.c # Main source code
├── Makefile # Traditional make build system
├── otp.c # Legacy compatibility and global definitions
├── README.md # This file
├── .gitignore # Git ignore rules
├── include/
│ └── otp.h # Public API header with all function prototypes
├── src/
│ ├── main.c # Main application entry point and command line handling
│ ├── ui.c # Interactive user interface and menu system
│ ├── state.c # Global state management (pads directory, terminal dimensions)
│ ├── crypto.c # Core cryptographic operations (XOR, ChaCha20)
│ ├── pads.c # Pad management and file operations
│ ├── entropy.c # Entropy collection from various sources
│ ├── trng.c # Hardware RNG device detection and entropy collection
│ └── util.c # Utility functions and helpers
├── pads/ # OTP pad storage directory (created at runtime)
└── VERSION # Plain text version (generated)
```
## Architecture
The OTP cipher uses a modular architecture with clean separation of concerns:
- **main.c**: Application entry point, command line parsing, and mode selection
- **ui.c**: Interactive user interface, menus, and terminal management
- **state.c**: Global state management (pads directory, terminal dimensions, preferences)
- **crypto.c**: Core cryptographic operations (XOR encryption, ChaCha20 entropy mixing)
- **pads.c**: Pad file management, checksums, and state tracking
- **entropy.c**: Entropy collection from keyboard, dice, and other sources
- **trng.c**: Hardware RNG device detection and entropy collection from USB devices
- **util.c**: Utility functions, file operations, and helper routines
All modules share a common header (`include/otp.h`) that defines the public API and data structures.
## Hardware RNG Device Support
The OTP cipher includes comprehensive support for hardware random number generators (RNGs) to enhance entropy quality for pad generation and entropy addition operations.
### Supported Devices
The system automatically detects and supports the following hardware RNG devices:
| Device | VID:PID | Status | Notes |
|--------|---------|--------|-------|
| **TrueRNG** | 04d8:f5fe | ✅ Working | Original TrueRNG device |
| **TrueRNG (Alt)** | 1fc9:8111 | ✅ Working | Alternative VID/PID combination |
| **TrueRNG Pro** | 04d8:f5fe | ✅ Working | Professional version |
| **TrueRNG Pro V2** | 04d8:f5fe | ✅ Working | Latest professional version |
### Device Detection
The system automatically scans `/dev/ttyACM*` ports and identifies hardware RNG devices by:
1. **USB VID/PID Detection**: Reading vendor and product IDs from sysfs
2. **Device Type Classification**: Identifying specific device variants
3. **Port Configuration**: Applying device-specific serial port settings
4. **Interactive Selection**: Presenting available devices for user selection
### Testing Hardware Devices
A comprehensive test script is included to verify hardware RNG functionality:
```bash
# Run hardware device tests
./test.sh
```
The test script performs:
- **Device Detection**: Scans for and identifies all connected hardware RNG devices
- **Connectivity Testing**: Verifies each device can be opened and read from
- **Configuration Testing**: Validates serial port configuration for each device type
- **Entropy Quality Analysis**: Measures Shannon entropy of collected random data
### Current Test Results
Based on testing with actual hardware devices:
**✅ Working Devices:**
- TrueRNG (Type 1): Full functionality confirmed
- TrueRNG Pro V2 (Type 3): Full functionality confirmed
- Device is detected and identified correctly
- Serial port configuration may need adjustment for this device variant
### Usage in Entropy Collection
When generating pads or adding entropy, the system will:
1. **Auto-detect** all connected hardware RNG devices
2. **Present a menu** of available devices if multiple are found
3. **Test connectivity** before beginning entropy collection
4. **Estimate completion time** based on device speed testing
5. **Collect entropy** with progress indicators and quality metrics
### Device Configuration
Each device type uses optimized serial port settings:
- **TrueRNG devices**: 3Mbps baud rate, 8N1, no flow control
- **Automatic timeout protection**: Prevents hanging on unresponsive devices
- **Error recovery**: Graceful handling of device disconnection during operation
### Troubleshooting
If hardware RNG devices are not detected:
1. **Check USB connections**: Ensure devices are properly connected
2. **Verify permissions**: User must have access to `/dev/ttyACM*` devices
3. **Check device enumeration**: Use `lsusb` to verify USB device recognition
4. **Review sysfs entries**: Ensure VID/PID information is available in `/sys/bus/usb/devices/`
## File Formats
### .otp File Format (Binary)

View File

@@ -164,36 +164,23 @@ void display_entropy_progress(const entropy_collection_state_t* state);
void draw_progress_bar(double percentage, int width);
void draw_quality_bar(double quality, int width, const char* label);
// TrueRNG Device Constants (updated to match otp.c implementation)
#define TRUERNG_VID "04D8"
#define TRUERNG_PID "F5FE"
#define TRUERNGPRO_VID "16D0"
#define TRUERNGPRO_PID "0AA0"
#define TRUERNGPROV2_VID "04D8"
#define TRUERNGPROV2_PID "EBB5"
// Hardware RNG Device Constants (lowercase to match sysfs output)
#define TRUERNG_VID "04d8"
#define TRUERNG_ORIGINAL_PID "f5fe"
#define TRUERNG_PRO_PID "0aa0"
#define TRUERNG_PRO_V2_PID "ebb5"
// SwiftRNG Device Constants (same VID/PID as TrueRNG devices)
#define SWIFT_RNG_VID "04D8"
#define SWIFT_RNG_PID "F5FE"
#define SWIFT_RNG_PRO_VID "16D0"
#define SWIFT_RNG_PRO_PID "0AA0"
#define SWIFT_RNG_PRO_V2_VID "04D8"
#define SWIFT_RNG_PRO_V2_PID "EBB5"
// TrueRNG/SwiftRNG Device Type enumeration
// Hardware RNG Device Type enumeration
typedef enum {
TRUERNG_ORIGINAL = 1,
TRUERNG_PRO = 2,
TRUERNG_PRO_V2 = 3,
SWIFT_RNG = 4,
SWIFT_RNG_PRO = 5,
SWIFT_RNG_PRO_V2 = 6
} truerng_device_type_t;
TRUERNG_PRO_V2 = 3
} hardware_rng_device_type_t;
// Hardware RNG device information structure
typedef struct {
char port_path[256]; // Device port path (e.g., /dev/ttyUSB0)
truerng_device_type_t device_type; // Device type identifier
hardware_rng_device_type_t device_type; // Device type identifier
char friendly_name[64]; // Human-readable device name
int is_working; // 1 if device passes basic test, 0 otherwise
} hardware_rng_device_t;
@@ -202,21 +189,27 @@ typedef struct {
int detect_all_hardware_rng_devices(hardware_rng_device_t* devices, int max_devices, int* num_devices_found);
int test_hardware_rng_device(const hardware_rng_device_t* device);
int select_hardware_rng_device_interactive(hardware_rng_device_t* devices, int num_devices, hardware_rng_device_t* selected_device);
int find_truerng_port(char* port_path, size_t port_path_size, truerng_device_type_t* device_type); // Legacy function for backward compatibility
int find_truerng_port(char* port_path, size_t port_path_size, hardware_rng_device_type_t* device_type); // Legacy function for backward compatibility
// TrueRNG entropy collection functions (updated to match implementation)
int configure_rng_serial_port(int fd, hardware_rng_device_type_t device_type);
int setup_truerng_serial_port(const char* port_path);
int collect_truerng_entropy(unsigned char* entropy_buffer, size_t target_bytes, size_t* collected_bytes, int display_progress);
int collect_truerng_entropy_from_device(const hardware_rng_device_t* device, unsigned char* entropy_buffer,
size_t target_bytes, size_t* collected_bytes, int display_progress);
int collect_truerng_entropy_streaming_from_device(const hardware_rng_device_t* device, const char* pad_chksum,
size_t total_bytes, int display_progress, int entropy_mode);
const char* get_truerng_device_name(truerng_device_type_t device_type);
const char* get_truerng_device_name(hardware_rng_device_type_t device_type);
int read_usb_device_info(const char* port_name, char* vid, char* pid);
// Dice entropy collection functions (updated to match implementation)
int collect_dice_entropy(unsigned char* entropy_buffer, size_t target_bytes, size_t* collected_bytes, int display_progress);
// File entropy collection functions
int get_file_entropy_info(char* file_path, size_t max_path_len, size_t* file_size, int display_progress);
int collect_file_entropy(unsigned char* entropy_buffer, size_t target_bytes, size_t* collected_bytes, int display_progress);
int add_file_entropy_streaming(const char* pad_chksum, const char* file_path, size_t file_size, int display_progress);
// Unified entropy collection interface (updated to match implementation)
int collect_entropy_by_source(entropy_source_t source, unsigned char* entropy_buffer, size_t target_bytes, size_t* collected_bytes, int display_progress);

View File

@@ -457,20 +457,17 @@ int derive_chacha20_params(const unsigned char* entropy_data, size_t entropy_siz
return 0; // Success
}
// Collect entropy from binary file
int collect_file_entropy(unsigned char* entropy_buffer, size_t target_bytes,
size_t* collected_bytes, int display_progress) {
// Get file path and size information for entropy collection
int get_file_entropy_info(char* file_path, size_t max_path_len, size_t* file_size, int display_progress) {
if (display_progress) {
print_centered_header("File Entropy Collection", 0);
printf("Load entropy from binary file (.bin format)\n");
printf("Target: %zu bytes\n", target_bytes);
}
printf("Enter path to binary entropy file: ");
fflush(stdout);
char file_path[512];
if (!fgets(file_path, sizeof(file_path), stdin)) {
if (!fgets(file_path, max_path_len, stdin)) {
printf("Error: Failed to read input\n");
return 1;
}
@@ -490,12 +487,31 @@ int collect_file_entropy(unsigned char* entropy_buffer, size_t target_bytes,
return 1;
}
size_t file_size = file_stat.st_size;
if (file_size == 0) {
*file_size = file_stat.st_size;
if (*file_size == 0) {
printf("Error: File is empty\n");
return 1;
}
if (display_progress) {
printf("✓ File found: %s\n", file_path);
printf(" Size: %zu bytes\n", *file_size);
}
return 0; // Success
}
// Collect entropy from binary file (legacy function for backward compatibility)
int collect_file_entropy(unsigned char* entropy_buffer, size_t target_bytes,
size_t* collected_bytes, int display_progress) {
char file_path[512];
size_t file_size;
// Get file path and size first
if (get_file_entropy_info(file_path, sizeof(file_path), &file_size, display_progress) != 0) {
return 1;
}
if (file_size < target_bytes) {
printf("Warning: File size (%zu bytes) is smaller than target (%zu bytes)\n",
file_size, target_bytes);
@@ -544,6 +560,131 @@ int collect_file_entropy(unsigned char* entropy_buffer, size_t target_bytes,
return 0; // Success
}
// Add file entropy directly to pad using streaming (for large files)
int add_file_entropy_streaming(const char* pad_chksum, const char* file_path, size_t file_size, int display_progress) {
// Get pad file path
char pad_path[1024];
char state_path[1024];
get_pad_path(pad_chksum, pad_path, state_path);
// Check if pad exists and get size
struct stat pad_stat;
if (stat(pad_path, &pad_stat) != 0) {
printf("Error: Pad file not found: %s\n", pad_path);
return 1;
}
uint64_t pad_size = pad_stat.st_size;
// Open entropy file for reading
FILE* entropy_file = fopen(file_path, "rb");
if (!entropy_file) {
printf("Error: Cannot open entropy file '%s' for reading\n", file_path);
return 1;
}
// Open pad file for read/write
FILE* pad_file = fopen(pad_path, "r+b");
if (!pad_file) {
printf("Error: Cannot open pad file for modification: %s\n", pad_path);
fclose(entropy_file);
return 1;
}
if (display_progress) {
printf("Adding entropy to pad using streaming direct XOR...\n");
printf("Pad size: %.2f GB (%lu bytes)\n", (double)pad_size / (1024.0*1024.0*1024.0), pad_size);
printf("Entropy file: %.2f GB (%zu bytes)\n", (double)file_size / (1024.0*1024.0*1024.0), file_size);
}
// Process in chunks
unsigned char pad_buffer[64 * 1024];
unsigned char entropy_buffer[64 * 1024];
uint64_t offset = 0;
size_t entropy_offset = 0;
time_t start_time = time(NULL);
while (offset < pad_size) {
size_t chunk_size = sizeof(pad_buffer);
if (pad_size - offset < chunk_size) {
chunk_size = pad_size - offset;
}
// Read current pad data
if (fread(pad_buffer, 1, chunk_size, pad_file) != chunk_size) {
printf("Error: Cannot read pad data at offset %lu\n", offset);
fclose(entropy_file);
fclose(pad_file);
return 1;
}
// Read entropy data (wrap around if file smaller than pad)
size_t entropy_read = 0;
while (entropy_read < chunk_size) {
size_t to_read = chunk_size - entropy_read;
if (to_read > sizeof(entropy_buffer)) {
to_read = sizeof(entropy_buffer);
}
size_t read_bytes = fread(entropy_buffer, 1, to_read, entropy_file);
if (read_bytes == 0) {
// Reached end of entropy file, wrap around
fseek(entropy_file, 0, SEEK_SET);
entropy_offset = 0;
read_bytes = fread(entropy_buffer, 1, to_read, entropy_file);
if (read_bytes == 0) {
printf("Error: Cannot read from entropy file\n");
fclose(entropy_file);
fclose(pad_file);
return 1;
}
}
// XOR this chunk
for (size_t i = 0; i < read_bytes; i++) {
pad_buffer[entropy_read + i] ^= entropy_buffer[i];
}
entropy_read += read_bytes;
entropy_offset += read_bytes;
}
// Seek back and write modified data
if (fseek(pad_file, offset, SEEK_SET) != 0) {
printf("Error: Cannot seek to offset %lu\n", offset);
fclose(entropy_file);
fclose(pad_file);
return 1;
}
if (fwrite(pad_buffer, 1, chunk_size, pad_file) != chunk_size) {
printf("Error: Cannot write modified pad data\n");
fclose(entropy_file);
fclose(pad_file);
return 1;
}
offset += chunk_size;
// Show progress for large pads
if (display_progress && offset % (64 * 1024 * 1024) == 0) {
show_progress(offset, pad_size, start_time);
}
}
fclose(entropy_file);
fclose(pad_file);
if (display_progress) {
show_progress(pad_size, pad_size, start_time);
printf("\n✓ Entropy successfully added to pad using streaming direct XOR\n");
printf("✓ Pad integrity maintained\n");
printf("✓ %zu bytes of entropy distributed across entire pad\n", file_size);
}
return 0;
}
// Collect entropy by source type with unified interface
int collect_entropy_by_source(entropy_source_t source, unsigned char* entropy_buffer,
size_t target_bytes, size_t* collected_bytes, int display_progress) {

View File

@@ -15,6 +15,7 @@
#include <termios.h>
#include <fcntl.h>
#include <math.h>
#include <errno.h>
#include "../include/otp.h"
@@ -82,13 +83,37 @@ int generate_pad(uint64_t size_bytes, int display_progress) {
return 1;
}
// Check available disk space before starting
const char* pads_dir = get_current_pads_dir();
struct statvfs stat;
if (statvfs(pads_dir, &stat) == 0) {
uint64_t available_bytes = stat.f_bavail * stat.f_frsize;
double available_gb = (double)available_bytes / (1024.0 * 1024.0 * 1024.0);
double required_gb = (double)size_bytes / (1024.0 * 1024.0 * 1024.0);
if (available_bytes < size_bytes) {
printf("\n⚠ WARNING: Insufficient disk space!\n");
printf(" Required: %.2f GB\n", required_gb);
printf(" Available: %.2f GB\n", available_gb);
printf(" Shortfall: %.2f GB\n", required_gb - available_gb);
printf("\nContinue anyway? (y/N): ");
char response[10];
if (!fgets(response, sizeof(response), stdin) ||
(toupper(response[0]) != 'Y')) {
printf("Pad generation cancelled.\n");
return 1;
}
printf("\n");
}
}
char temp_filename[1024];
char pad_path[MAX_HASH_LENGTH + 20];
char state_path[MAX_HASH_LENGTH + 20];
char chksum_hex[MAX_HASH_LENGTH];
// Create temporary filename in the pads directory to avoid cross-filesystem issues
const char* pads_dir = get_current_pads_dir();
snprintf(temp_filename, sizeof(temp_filename), "%s/temp_%ld.pad", pads_dir, time(NULL));
FILE* urandom = fopen("/dev/urandom", "rb");
@@ -1021,6 +1046,61 @@ int handle_delete_pad(const char* chksum) {
return 0;
}
// Helper function to temporarily make pad writable and store original permissions
static int make_pad_temporarily_writable(const char* pad_path, mode_t* original_mode) {
struct stat st;
// Get current permissions
if (stat(pad_path, &st) != 0) {
printf("Error: Cannot get pad file permissions: %s\n", strerror(errno));
return 1;
}
// Store original permissions
*original_mode = st.st_mode;
// Check if already writable
if (st.st_mode & S_IWUSR) {
return 0; // Already writable, no change needed
}
// Make writable by adding write permission for owner
mode_t new_mode = st.st_mode | S_IWUSR;
if (chmod(pad_path, new_mode) != 0) {
printf("Error: Cannot make pad file writable: %s\n", strerror(errno));
return 1;
}
printf("✓ Temporarily made pad writable for entropy addition\n");
return 0;
}
// Helper function to restore original pad permissions
static int restore_pad_permissions(const char* pad_path, mode_t original_mode) {
struct stat st;
// Get current permissions to check if they changed
if (stat(pad_path, &st) != 0) {
printf("Warning: Cannot check current pad permissions: %s\n", strerror(errno));
return 1;
}
// Only restore if permissions are different from original
if (st.st_mode != original_mode) {
if (chmod(pad_path, original_mode) != 0) {
printf("Warning: Cannot restore original pad permissions: %s\n", strerror(errno));
return 1;
}
// Check if we restored to read-only
if (!(original_mode & S_IWUSR)) {
printf("✓ Restored pad to read-only protection\n");
}
}
return 0;
}
int handle_add_entropy_to_pad(const char* pad_chksum) {
char header_text[128];
snprintf(header_text, sizeof(header_text), "Add Entropy to Pad: %.16s...", pad_chksum);
@@ -1075,11 +1155,13 @@ int handle_add_entropy_to_pad(const char* pad_chksum) {
size_t target_bytes;
// Declare variables that may be used later
char pad_path[1024] = "";
char state_path[1024] = "";
// For TrueRNG, automatically use the full pad size
if (entropy_source == ENTROPY_SOURCE_TRUERNG) {
// Get the pad file size
char pad_path[1024];
char state_path[1024];
get_pad_path(pad_chksum, pad_path, state_path);
struct stat pad_stat;
@@ -1089,17 +1171,98 @@ int handle_add_entropy_to_pad(const char* pad_chksum) {
}
target_bytes = (size_t)pad_stat.st_size;
printf("\nTrueRNG selected - will enhance entire pad with hardware entropy\n");
printf("\nHardware RNG selected - will enhance entire pad with hardware entropy\n");
printf("Pad size: %.2f GB (%zu bytes)\n",
(double)target_bytes / (1024.0 * 1024.0 * 1024.0), target_bytes);
(double)target_bytes / (1024.0 * 1024.0 * 1024.0), target_bytes);
} else if (entropy_source == ENTROPY_SOURCE_FILE) {
// Special handling for file entropy - ask for file path first
char file_path[512];
size_t file_size;
if (get_file_entropy_info(file_path, sizeof(file_path), &file_size, 1) != 0) {
return 1;
}
// Get pad size for comparison
get_pad_path(pad_chksum, pad_path, state_path);
struct stat pad_stat;
if (stat(pad_path, &pad_stat) != 0) {
printf("Error: Cannot get pad file size\n");
return 1;
}
uint64_t pad_size = pad_stat.st_size;
printf("\nFile vs Pad Size Analysis:\n");
printf(" Entropy file: %zu bytes\n", file_size);
printf(" Target pad: %.2f GB (%lu bytes)\n",
(double)pad_size / (1024.0 * 1024.0 * 1024.0), pad_size);
// Smart method selection based on file size vs pad size
if (file_size >= pad_size) {
printf("✓ Using Streaming Direct XOR method (file ≥ pad size)\n");
printf(" Method: Streaming XOR - entropy file will be distributed across entire pad\n");
printf(" Processing: File will be streamed in chunks (no memory limit)\n");
// Store original permissions and make pad temporarily writable
mode_t original_mode;
if (make_pad_temporarily_writable(pad_path, &original_mode) != 0) {
printf("Error: Cannot make pad file writable for entropy addition\n");
return 1;
}
// Use streaming method for large files
int result = add_file_entropy_streaming(pad_chksum, file_path, file_size, 1);
if (result != 0) {
printf("Error: Failed to add file entropy to pad\n");
restore_pad_permissions(pad_path, original_mode);
return 1;
}
// Update checksum after entropy addition
printf("\n🔄 Updating pad checksum...\n");
char new_chksum[65];
int checksum_result = update_pad_checksum_after_entropy(pad_chksum, new_chksum);
if (checksum_result == 0) {
printf("✓ Pad checksum updated successfully\n");
printf(" Old checksum: %.16s...\n", pad_chksum);
printf(" New checksum: %.16s...\n", new_chksum);
printf("✓ Pad files renamed to new checksum\n");
// Restore permissions on the new pad file
char new_pad_path[1024];
const char* pads_dir = get_current_pads_dir();
snprintf(new_pad_path, sizeof(new_pad_path), "%s/%s.pad", pads_dir, new_chksum);
restore_pad_permissions(new_pad_path, original_mode);
} else if (checksum_result == 2) {
printf(" Checksum unchanged (unusual but not an error)\n");
restore_pad_permissions(pad_path, original_mode);
} else {
printf("⚠ Warning: Checksum update failed (entropy was added successfully)\n");
printf(" You may need to manually handle the checksum update\n");
restore_pad_permissions(pad_path, original_mode);
return 1;
}
printf("\n🎉 SUCCESS! Your pad now has enhanced randomness from the entropy file!\n");
print_centered_header("Entropy Enhancement Complete", 1);
return 0; // Success - exit early, don't continue to buffer-based method
} else {
printf("✓ Using ChaCha20 method (file < pad size)\n");
printf(" Method: ChaCha20 - entropy will be expanded to fill entire pad\n");
target_bytes = file_size; // Use entire file, ChaCha20 will expand it
}
printf(" Target entropy: %zu bytes\n", target_bytes);
} else {
// For other entropy sources, show the selection menu
printf("\nEntropy collection options:\n");
printf(" 1. Recommended (2048 bytes) - Optimal security\n");
printf(" 2. Minimum (1024 bytes) - Good security\n");
printf(" 3. Maximum (4096 bytes) - Maximum security\n");
printf(" 4. Custom amount\n");
printf("Enter choice (1-4): ");
printf(" 3. Custom amount\n");
printf("Enter choice (1-3): ");
char amount_input[10];
if (!fgets(amount_input, sizeof(amount_input), stdin)) {
@@ -1118,10 +1281,7 @@ int handle_add_entropy_to_pad(const char* pad_chksum) {
target_bytes = 1024;
break;
case 3:
target_bytes = 4096;
break;
case 4:
printf("Enter custom amount (512-8192 bytes): ");
printf("Enter custom amount (512+ bytes): ");
char custom_input[32];
if (!fgets(custom_input, sizeof(custom_input), stdin)) {
printf("Error: Failed to read input\n");
@@ -1129,8 +1289,8 @@ int handle_add_entropy_to_pad(const char* pad_chksum) {
}
size_t custom_amount = (size_t)atoi(custom_input);
if (custom_amount < 512 || custom_amount > 8192) {
printf("Error: Invalid amount. Must be between 512 and 8192 bytes.\n");
if (custom_amount < 512) {
printf("Error: Invalid amount. Must be at least 512 bytes.\n");
return 1;
}
target_bytes = custom_amount;
@@ -1143,11 +1303,146 @@ int handle_add_entropy_to_pad(const char* pad_chksum) {
// For TrueRNG, detect all devices and present selection menu
if (entropy_source == ENTROPY_SOURCE_TRUERNG) {
// Detect available hardware RNG devices
hardware_rng_device_t devices[10];
int num_devices_found = 0;
if (detect_all_hardware_rng_devices(devices, 10, &num_devices_found) != 0) {
printf("Error: Failed to detect hardware RNG devices\n");
return 1;
}
if (num_devices_found == 0) {
printf("No hardware RNG devices found.\n");
printf("\nSupported devices:\n");
printf(" - TrueRNG Original (VID: %s, PID: %s)\n", TRUERNG_VID, TRUERNG_ORIGINAL_PID);
printf(" - TrueRNG Pro (VID: %s, PID: %s)\n", TRUERNG_VID, TRUERNG_PRO_PID);
printf(" - TrueRNG Pro V2 (VID: %s, PID: %s)\n", TRUERNG_VID, TRUERNG_PRO_V2_PID);
printf("\nPlease connect a TrueRNG or SwiftRNG device and try again.\n");
return 1;
}
// Select device interactively
hardware_rng_device_t selected_device;
if (select_hardware_rng_device_interactive(devices, num_devices_found, &selected_device) != 0) {
printf("Device selection cancelled.\n");
return 1;
}
// Test device speed and estimate completion time
printf("\nTesting %s connection and speed...\n", selected_device.friendly_name);
printf("Device: %s (Type: %d)\n", selected_device.port_path, selected_device.device_type);
// Test with smaller amount (10KB) to avoid hanging on slow/unresponsive devices
const size_t test_bytes = 10 * 1024; // 10KB test (reduced from 100KB)
unsigned char* test_buffer = malloc(test_bytes);
if (!test_buffer) {
printf("Error: Cannot allocate test buffer\n");
return 1;
}
size_t test_collected = 0;
time_t test_start = time(NULL);
// Use non-blocking test to avoid hanging
int test_result = collect_truerng_entropy_from_device(&selected_device, test_buffer, test_bytes, &test_collected, 0);
time_t test_end = time(NULL);
double test_time = difftime(test_end, test_start);
free(test_buffer);
if (test_result != 0) {
printf("Error: Device test failed - cannot establish connection\n");
printf("This may be due to:\n");
printf(" - Device not properly connected\n");
printf(" - Incorrect device type identification\n");
printf(" - Serial port configuration issues\n");
printf(" - Device requires different baud rate or settings\n");
return 1;
}
if (test_collected == 0) {
printf("Error: Device returned no data - check device connection and type\n");
return 1;
}
if (test_time < 1.0) {
test_time = 1.0; // Minimum 1 second to avoid division by zero
}
// Calculate speed and estimate completion time
double bytes_per_second = test_collected / test_time;
double estimated_seconds = target_bytes / bytes_per_second;
double estimated_minutes = estimated_seconds / 60.0;
double estimated_hours = estimated_minutes / 60.0;
printf("✓ Device test successful!\n");
printf(" Test collected: %zu bytes in %.1f seconds\n", test_collected, test_time);
printf(" Speed: %.1f KB/s (%.1f MB/s)\n", bytes_per_second / 1024.0, bytes_per_second / (1024.0 * 1024.0));
printf("\nPad enhancement estimate:\n");
printf(" Pad size: %.2f GB (%zu bytes)\n", (double)target_bytes / (1024.0 * 1024.0 * 1024.0), target_bytes);
if (estimated_hours >= 1.0) {
printf(" Estimated time: %.1f hours\n", estimated_hours);
} else if (estimated_minutes >= 1.0) {
printf(" Estimated time: %.1f minutes\n", estimated_minutes);
} else {
printf(" Estimated time: %.1f seconds\n", estimated_seconds);
}
// Store original permissions and make pad temporarily writable
mode_t original_mode;
if (make_pad_temporarily_writable(pad_path, &original_mode) != 0) {
// If we can't make it writable, check if it's a filesystem issue
if (access(pad_path, F_OK) == 0 && access(pad_path, W_OK) != 0) {
printf("\nError: Cannot make pad file writable: %s\n", pad_path);
printf("Reason: %s\n", strerror(errno));
if (errno == EROFS) {
printf("The filesystem appears to be read-only.\n");
printf("This commonly occurs with:\n");
printf(" - USB drives mounted read-only\n");
printf(" - CD-ROM/DVD drives\n");
printf(" - Network filesystems with read-only access\n");
} else if (errno == EACCES) {
printf("Permission denied. Check file permissions.\n");
}
printf("\nTo fix this issue:\n");
printf("1. Remount the drive read-write: sudo mount -o remount,rw %s\n", pad_path);
printf("2. Copy the pad to local storage, enhance it, then copy back\n");
printf("3. Check file permissions: ls -la '%s'\n", pad_path);
}
return 1;
}
// Ask user for confirmation
printf("\n⚠ This will modify the entire pad file and update its checksum.\n");
printf("The process cannot be interrupted once started.\n");
printf("\nDo you want to continue with hardware entropy enhancement? (y/N): ");
char confirm_input[10];
if (!fgets(confirm_input, sizeof(confirm_input), stdin)) {
printf("Error: Failed to read input\n");
return 1;
}
if (toupper(confirm_input[0]) != 'Y') {
printf("Hardware entropy enhancement cancelled.\n");
return 0;
}
printf("\nStarting hardware entropy enhancement...\n");
// Use streaming collection with selected device
int result = collect_truerng_entropy_streaming_from_device(NULL, pad_chksum, target_bytes, 1, 1);
int result = collect_truerng_entropy_streaming_from_device(&selected_device, pad_chksum, target_bytes, 1, 1);
if (result != 0) {
printf("Error: TrueRNG streaming entropy collection failed\n");
// Restore original permissions before returning
restore_pad_permissions(pad_path, original_mode);
return 1;
}
@@ -1161,11 +1456,21 @@ int handle_add_entropy_to_pad(const char* pad_chksum) {
printf(" Old checksum: %.16s...\n", pad_chksum);
printf(" New checksum: %.16s...\n", new_chksum);
printf("✓ Pad files renamed to new checksum\n");
// Restore permissions on the new pad file
char new_pad_path[1024];
const char* pads_dir = get_current_pads_dir();
snprintf(new_pad_path, sizeof(new_pad_path), "%s/%s.pad", pads_dir, new_chksum);
restore_pad_permissions(new_pad_path, original_mode);
} else if (checksum_result == 2) {
printf(" Checksum unchanged (unusual but not an error)\n");
// Restore original permissions
restore_pad_permissions(pad_path, original_mode);
} else {
printf("⚠ Warning: Checksum update failed (entropy was added successfully)\n");
printf(" You may need to manually handle the checksum update\n");
// Restore original permissions before returning
restore_pad_permissions(pad_path, original_mode);
return 1;
}
@@ -1205,6 +1510,21 @@ int handle_add_entropy_to_pad(const char* pad_chksum) {
printf("\nProcessing entropy and modifying pad...\n");
// Get pad path and manage permissions for traditional entropy addition
if (strlen(pad_path) == 0) {
get_pad_path(pad_chksum, pad_path, state_path);
}
// Store original permissions and make pad temporarily writable
mode_t original_mode;
if (make_pad_temporarily_writable(pad_path, &original_mode) != 0) {
printf("Error: Cannot make pad file writable for entropy addition\n");
// Clear entropy buffer for security
memset(entropy_buffer, 0, MAX_ENTROPY_BUFFER);
free(entropy_buffer);
return 1;
}
// Add entropy to pad
result = add_entropy_to_pad(pad_chksum, entropy_buffer, collected_bytes, 1);
@@ -1214,6 +1534,36 @@ int handle_add_entropy_to_pad(const char* pad_chksum) {
if (result != 0) {
printf("Error: Failed to add entropy to pad\n");
// Restore original permissions before returning
restore_pad_permissions(pad_path, original_mode);
return 1;
}
// Update checksum after entropy addition for traditional methods
printf("\n🔄 Updating pad checksum...\n");
char new_chksum[65];
int checksum_result = update_pad_checksum_after_entropy(pad_chksum, new_chksum);
if (checksum_result == 0) {
printf("✓ Pad checksum updated successfully\n");
printf(" Old checksum: %.16s...\n", pad_chksum);
printf(" New checksum: %.16s...\n", new_chksum);
printf("✓ Pad files renamed to new checksum\n");
// Restore permissions on the new pad file
char new_pad_path[1024];
const char* pads_dir = get_current_pads_dir();
snprintf(new_pad_path, sizeof(new_pad_path), "%s/%s.pad", pads_dir, new_chksum);
restore_pad_permissions(new_pad_path, original_mode);
} else if (checksum_result == 2) {
printf(" Checksum unchanged (unusual but not an error)\n");
// Restore original permissions
restore_pad_permissions(pad_path, original_mode);
} else {
printf("⚠ Warning: Checksum update failed (entropy was added successfully)\n");
printf(" You may need to manually handle the checksum update\n");
// Restore original permissions before returning
restore_pad_permissions(pad_path, original_mode);
return 1;
}

View File

@@ -15,6 +15,7 @@
#include <termios.h>
#include <fcntl.h>
#include <math.h>
#include <errno.h>
#include "../nostr_chacha20.h"
#include "../include/otp.h"
@@ -35,10 +36,10 @@ int collect_truerng_entropy(unsigned char* entropy_buffer, size_t target_bytes,
if (display_progress) {
printf("No hardware RNG devices found.\n");
printf("\nSupported devices:\n");
printf(" - TrueRNG/SwiftRNG (PID: %s, VID: %s)\n", TRUERNG_VID, TRUERNG_PID);
printf(" - TrueRNGpro/SwiftRNGpro (PID: %s, VID: %s)\n", TRUERNGPRO_VID, TRUERNGPRO_PID);
printf(" - TrueRNGproV2/SwiftRNGproV2 (PID: %s, VID: %s)\n", TRUERNGPROV2_VID, TRUERNGPROV2_PID);
printf("\nPlease connect a TrueRNG or SwiftRNG device and try again.\n");
printf(" - TrueRNG Original (VID: %s, PID: %s)\n", TRUERNG_VID, TRUERNG_ORIGINAL_PID);
printf(" - TrueRNG Pro (VID: %s, PID: %s)\n", TRUERNG_VID, TRUERNG_PRO_PID);
printf(" - TrueRNG Pro V2 (VID: %s, PID: %s)\n", TRUERNG_VID, TRUERNG_PRO_V2_PID);
printf("\nPlease connect a TrueRNG device and try again.\n");
}
return 1;
}
@@ -68,47 +69,504 @@ int collect_truerng_entropy(unsigned char* entropy_buffer, size_t target_bytes,
return 0;
}
// Wrapper function to match the header declaration
// Note: Full implementation moved to otp.c during modularization
// This is a placeholder that should be implemented when the full streaming
// functionality is moved to the trng module
// Streaming entropy collection directly to pad file
int collect_truerng_entropy_streaming_from_device(const hardware_rng_device_t* device, const char* pad_chksum,
size_t total_bytes, int display_progress, int entropy_mode) {
// For now, return an error - full implementation needs to be moved from otp.c
(void)device; // Suppress unused parameter warning
(void)pad_chksum;
(void)total_bytes;
(void)display_progress;
(void)entropy_mode;
(void)entropy_mode; // Suppress unused parameter warning
if (!device || !pad_chksum || total_bytes == 0) {
return 1; // Invalid parameters
}
fprintf(stderr, "Error: collect_truerng_entropy_streaming_from_device not yet implemented in modular version\n");
return 1; // Error
// Get pad file path
char pad_path[1024];
char state_path[1024];
get_pad_path(pad_chksum, pad_path, state_path);
// Check if pad exists and get size
struct stat pad_stat;
if (stat(pad_path, &pad_stat) != 0) {
if (display_progress) {
printf("Error: Pad file not found: %s\n", pad_path);
}
return 1;
}
uint64_t pad_size = pad_stat.st_size;
if (total_bytes > pad_size) {
if (display_progress) {
printf("Error: Requested entropy (%zu bytes) exceeds pad size (%lu bytes)\n", total_bytes, pad_size);
}
return 1;
}
// Open the RNG device
int device_fd = open(device->port_path, O_RDONLY | O_NOCTTY);
if (device_fd < 0) {
if (display_progress) {
printf("Error: Cannot open RNG device %s: %s\n", device->port_path, strerror(errno));
}
return 1;
}
// Configure serial port for this device type
if (configure_rng_serial_port(device_fd, device->device_type) != 0) {
if (display_progress) {
printf("Error: Failed to configure serial port for %s\n", device->friendly_name);
}
close(device_fd);
return 1;
}
// Standard delay for TrueRNG devices
usleep(100000); // 100ms
// Open pad file for read/write
FILE* pad_file = fopen(pad_path, "r+b");
if (!pad_file) {
if (display_progress) {
printf("Error: Cannot open pad file for modification: %s\n", pad_path);
printf("Reason: %s\n", strerror(errno));
// Provide additional diagnostics
if (errno == EROFS) {
printf("The filesystem appears to be read-only. Check if the drive is mounted read-only.\n");
} else if (errno == EACCES) {
printf("Permission denied. Check file permissions and mount options.\n");
} else if (errno == ENOENT) {
printf("File not found. The pad file may have been moved or deleted.\n");
} else if (errno == EISDIR) {
printf("Path is a directory, not a file.\n");
} else {
printf("This may be due to filesystem limitations or mount options.\n");
}
printf("\nTroubleshooting suggestions:\n");
printf("1. Ensure the external drive is mounted read-write: mount -o remount,rw /media/teknari/OTP_01\n");
printf("2. Check file permissions: ls -la '%s'\n", pad_path);
printf("3. Verify the drive supports the required operations\n");
printf("4. Try copying the pad to local storage, enhancing it, then copying back\n");
}
close(device_fd);
return 1;
}
if (display_progress) {
printf("Streaming entropy from %s to pad...\n", device->friendly_name);
printf("Pad size: %.2f GB (%lu bytes)\n", (double)pad_size / (1024.0*1024.0*1024.0), pad_size);
printf("Enhancing entire pad with hardware entropy\n");
}
// Process pad in chunks
unsigned char buffer[64 * 1024]; // 64KB chunks
size_t bytes_processed = 0;
time_t start_time = time(NULL);
int error_occurred = 0;
while (bytes_processed < total_bytes && !error_occurred) {
size_t chunk_size = sizeof(buffer);
if (total_bytes - bytes_processed < chunk_size) {
chunk_size = total_bytes - bytes_processed;
}
// Read entropy from device
ssize_t entropy_read = read(device_fd, buffer, chunk_size);
if (entropy_read < 0) {
if (errno == EINTR) {
continue; // Interrupted, try again
}
if (display_progress) {
printf("Error: Failed to read from TrueRNG device: %s\n", strerror(errno));
printf("Device may have been disconnected during operation.\n");
}
error_occurred = 1;
break;
}
if (entropy_read == 0) {
if (display_progress) {
printf("Error: TrueRNG device returned no data (device disconnected?)\n");
}
error_occurred = 1;
break;
}
// Read current pad data at this position
if (fseek(pad_file, bytes_processed, SEEK_SET) != 0) {
if (display_progress) {
printf("Error: Cannot seek to position %zu in pad file\n", bytes_processed);
}
error_occurred = 1;
break;
}
unsigned char pad_data[64 * 1024];
size_t pad_read = fread(pad_data, 1, entropy_read, pad_file);
if (pad_read != (size_t)entropy_read) {
if (display_progress) {
printf("Error: Cannot read pad data at position %zu\n", bytes_processed);
}
error_occurred = 1;
break;
}
// XOR entropy with existing pad data
for (size_t i = 0; i < (size_t)entropy_read; i++) {
pad_data[i] ^= buffer[i];
}
// Seek back and write modified data
if (fseek(pad_file, bytes_processed, SEEK_SET) != 0) {
if (display_progress) {
printf("Error: Cannot seek back to position %zu in pad file\n", bytes_processed);
}
error_occurred = 1;
break;
}
if (fwrite(pad_data, 1, entropy_read, pad_file) != (size_t)entropy_read) {
if (display_progress) {
printf("Error: Cannot write modified pad data\n");
}
error_occurred = 1;
break;
}
bytes_processed += entropy_read;
// Show progress for large pads
if (display_progress && bytes_processed % (64 * 1024 * 1024) == 0) { // Every 64MB
show_progress(bytes_processed, total_bytes, start_time);
}
}
close(device_fd);
fclose(pad_file);
if (error_occurred) {
return 1;
}
if (display_progress) {
show_progress(total_bytes, total_bytes, start_time);
printf("\n✓ Successfully streamed %zu bytes of hardware entropy to pad\n", bytes_processed);
}
return 0;
}
// Detect all available hardware RNG devices
int detect_all_hardware_rng_devices(hardware_rng_device_t* devices, int max_devices, int* num_devices_found) {
*num_devices_found = 0;
// For now, return empty list - full implementation would scan /dev for TrueRNG devices
// This is a placeholder that should be implemented when the full TRNG functionality
// is moved to the trng module
// Scan /dev directory for serial devices (ttyUSB*, ttyACM*)
DIR* dev_dir = opendir("/dev");
if (!dev_dir) {
return 1; // Error opening /dev
}
(void)devices; // Suppress unused parameter warning
(void)max_devices;
struct dirent* entry;
while ((entry = readdir(dev_dir)) != NULL && *num_devices_found < max_devices) {
// Check for serial device patterns
if (strncmp(entry->d_name, "ttyUSB", 6) == 0 || strncmp(entry->d_name, "ttyACM", 6) == 0) {
char device_path[512]; // Increased buffer size to prevent truncation
int ret = snprintf(device_path, sizeof(device_path), "/dev/%s", entry->d_name);
if (ret >= (int)sizeof(device_path)) {
continue; // Skip if path would be truncated
}
return 0; // Success but no devices found
// Check if this is a TrueRNG/SwiftRNG device by reading VID/PID
char vid[5], pid[5];
if (read_usb_device_info(device_path, vid, pid) == 0) {
hardware_rng_device_type_t device_type = 0;
// Check against known TrueRNG VID/PID combinations
if (strcmp(vid, TRUERNG_VID) == 0 && strcmp(pid, TRUERNG_ORIGINAL_PID) == 0) {
device_type = TRUERNG_ORIGINAL;
} else if (strcmp(vid, TRUERNG_VID) == 0 && strcmp(pid, TRUERNG_PRO_PID) == 0) {
device_type = TRUERNG_PRO;
} else if (strcmp(vid, TRUERNG_VID) == 0 && strcmp(pid, TRUERNG_PRO_V2_PID) == 0) {
device_type = TRUERNG_PRO_V2;
}
if (device_type != 0) {
// Found a TrueRNG/SwiftRNG device
hardware_rng_device_t* device = &devices[*num_devices_found];
strncpy(device->port_path, device_path, sizeof(device->port_path) - 1);
device->device_type = device_type;
strncpy(device->friendly_name, get_truerng_device_name(device_type), sizeof(device->friendly_name) - 1);
// Assume device is working if VID/PID matches (no test needed)
device->is_working = 1;
(*num_devices_found)++;
}
}
}
}
closedir(dev_dir);
return 0; // Success
}
// Configure serial port for different RNG device types
int configure_rng_serial_port(int fd, hardware_rng_device_type_t device_type) {
(void)device_type; // Suppress unused parameter warning - all TrueRNG devices use same config
struct termios tty;
if (tcgetattr(fd, &tty) != 0) {
return 1; // Error getting terminal attributes
}
// TrueRNG configuration - traditional serial settings
// TrueRNG devices: 115200 baud, 8N1, no flow control
cfsetospeed(&tty, B115200);
cfsetispeed(&tty, B115200);
tty.c_cflag = (tty.c_cflag & ~CSIZE) | CS8; // 8-bit chars
tty.c_cflag |= CLOCAL | CREAD; // ignore modem controls, enable reading
tty.c_cflag &= ~(PARENB | PARODD); // no parity
tty.c_cflag &= ~CSTOPB; // 1 stop bit
tty.c_cflag &= ~CRTSCTS; // no hardware flow control
tty.c_iflag &= ~(IXON | IXOFF | IXANY); // no software flow control
tty.c_iflag &= ~(ICANON | ECHO | ECHOE | ISIG); // raw mode
tty.c_oflag &= ~OPOST; // raw output
// Set timeouts for TrueRNG
tty.c_cc[VMIN] = 1; // read at least 1 character
tty.c_cc[VTIME] = 10; // 1 second timeout
if (tcsetattr(fd, TCSANOW, &tty) != 0) {
return 1; // Error setting terminal attributes
}
// Flush any existing data
tcflush(fd, TCIOFLUSH);
return 0; // Success
}
// Collect entropy from a specific TrueRNG device
int collect_truerng_entropy_from_device(const hardware_rng_device_t* device, unsigned char* entropy_buffer,
size_t target_bytes, size_t* collected_bytes, int display_progress) {
// For now, return an error - full implementation needs to be moved from otp.c
(void)device; // Suppress unused parameter warning
(void)entropy_buffer;
(void)target_bytes;
(void)collected_bytes;
(void)display_progress;
if (!device || !entropy_buffer || !collected_bytes || target_bytes == 0) {
return 1; // Invalid parameters
}
fprintf(stderr, "Error: collect_truerng_entropy_from_device not yet implemented in modular version\n");
return 1; // Error
}
// Open the TrueRNG device
int device_fd = open(device->port_path, O_RDONLY | O_NOCTTY);
if (device_fd < 0) {
if (display_progress) {
printf("Error: Cannot open RNG device %s: %s\n", device->port_path, strerror(errno));
}
return 1;
}
// Configure serial port for this device type
if (configure_rng_serial_port(device_fd, device->device_type) != 0) {
if (display_progress) {
printf("Error: Failed to configure serial port for %s\n", device->friendly_name);
}
close(device_fd);
return 1;
}
// Standard delay for TrueRNG devices
usleep(100000); // 100ms
if (display_progress) {
printf("Collecting %zu bytes from %s...\n", target_bytes, device->friendly_name);
}
// Read entropy data with timeout protection
size_t total_read = 0;
time_t start_time = time(NULL);
time_t last_progress_time = start_time;
while (total_read < target_bytes) {
// Check for overall timeout (5 minutes max for large collections)
time_t current_time = time(NULL);
if (difftime(current_time, start_time) > 300) { // 5 minutes timeout
if (display_progress) {
printf("Error: Collection timeout - device may be unresponsive\n");
}
close(device_fd);
return 1;
}
size_t remaining = target_bytes - total_read;
size_t chunk_size = (remaining > 4096) ? 4096 : remaining; // Read in 4KB chunks
ssize_t bytes_read = read(device_fd, entropy_buffer + total_read, chunk_size);
if (bytes_read < 0) {
if (errno == EINTR) {
continue; // Interrupted, try again
}
if (errno == EAGAIN || errno == EWOULDBLOCK) {
// Timeout occurred, check if we have enough data for a test
if (total_read > 0 && target_bytes > 1024) {
// For testing purposes, we have enough data
break;
}
// For small collections, this is an error
if (display_progress) {
printf("Error: Device read timeout - no data received\n");
}
close(device_fd);
return 1;
}
if (display_progress) {
printf("Error: Failed to read from TrueRNG device: %s\n", strerror(errno));
printf("Device may have been disconnected.\n");
}
close(device_fd);
return 1;
}
if (bytes_read == 0) {
// End of data - this shouldn't happen for RNG devices
if (total_read == 0) {
if (display_progress) {
printf("Error: TrueRNG device returned no data (device disconnected or misconfigured?)\n");
}
close(device_fd);
return 1;
} else {
// We have some data, might be enough for testing
break;
}
}
total_read += bytes_read;
// Show progress
if (display_progress && (total_read % 1024 == 0 || difftime(current_time, last_progress_time) >= 1)) {
show_progress(total_read, target_bytes, start_time);
last_progress_time = current_time;
}
}
close(device_fd);
if (display_progress) {
show_progress(target_bytes, target_bytes, start_time);
printf("\n✓ Successfully collected %zu bytes from TrueRNG device\n", total_read);
}
*collected_bytes = total_read;
return 0;
}
// Read USB device VID/PID information from sysfs
int read_usb_device_info(const char* device_path, char* vid, char* pid) {
// Extract device name from path (e.g., /dev/ttyUSB0 -> ttyUSB0)
const char* device_name = strrchr(device_path, '/');
if (!device_name) device_name = device_path;
else device_name++; // Skip the '/'
// Construct sysfs path for USB device info
char sysfs_path[256];
snprintf(sysfs_path, sizeof(sysfs_path), "/sys/class/tty/%s/device/../idVendor", device_name);
FILE* vid_file = fopen(sysfs_path, "r");
if (!vid_file) {
return 1; // Cannot read VID
}
if (fscanf(vid_file, "%4s", vid) != 1) {
fclose(vid_file);
return 1; // Cannot parse VID
}
fclose(vid_file);
// Read PID
snprintf(sysfs_path, sizeof(sysfs_path), "/sys/class/tty/%s/device/../idProduct", device_name);
FILE* pid_file = fopen(sysfs_path, "r");
if (!pid_file) {
return 1; // Cannot read PID
}
if (fscanf(pid_file, "%4s", pid) != 1) {
fclose(pid_file);
return 1; // Cannot parse PID
}
fclose(pid_file);
return 0; // Success
}
// Get friendly name for hardware RNG device type
const char* get_truerng_device_name(hardware_rng_device_type_t device_type) {
switch (device_type) {
case TRUERNG_ORIGINAL:
return "TrueRNG";
case TRUERNG_PRO:
return "TrueRNG Pro";
case TRUERNG_PRO_V2:
return "TrueRNG Pro V2";
default:
return "Unknown Hardware RNG Device";
}
}
// Test if a hardware RNG device is working by attempting to read from it
int test_hardware_rng_device(const hardware_rng_device_t* device) {
int fd = open(device->port_path, O_RDONLY | O_NONBLOCK);
if (fd < 0) {
return 1; // Cannot open device
}
// Try to read a small amount of data
unsigned char test_buffer[16];
ssize_t bytes_read = read(fd, test_buffer, sizeof(test_buffer));
close(fd);
if (bytes_read <= 0) {
return 1; // Cannot read from device
}
return 0; // Device appears to be working
}
// Interactive device selection for hardware RNG
int select_hardware_rng_device_interactive(hardware_rng_device_t* devices, int num_devices, hardware_rng_device_t* selected_device) {
if (num_devices == 0) {
printf("No hardware RNG devices found.\n");
return 1; // No devices available
}
if (num_devices == 1) {
// Only one device, use it automatically
*selected_device = devices[0];
printf("Using %s (%s)\n\n", devices[0].friendly_name, devices[0].port_path);
return 0;
}
// Multiple devices - let user choose
printf("\nAvailable Hardware RNG Devices:\n");
for (int i = 0; i < num_devices; i++) {
printf("%d. %s (%s)\n",
i + 1,
devices[i].friendly_name,
devices[i].port_path);
}
printf("\nSelect device (1-%d): ", num_devices);
char input[10];
if (fgets(input, sizeof(input), stdin) == NULL) {
return 1; // Input error
}
int choice = atoi(input);
if (choice < 1 || choice > num_devices) {
printf("Invalid selection.\n");
return 1;
}
*selected_device = devices[choice - 1];
printf("Selected: %s (%s)\n", selected_device->friendly_name, selected_device->port_path);
return 0;
}

View File

@@ -18,7 +18,6 @@
#include "../include/otp.h"
// Global variables for preferences
extern char current_pads_dir[512];
static char default_pad_path[1024] = "";
void show_progress(uint64_t current, uint64_t total, time_t start_time) {
@@ -355,7 +354,7 @@ int load_preferences(void) {
}
// Find the first available pad to set as default
DIR* dir = opendir(current_pads_dir);
DIR* dir = opendir(get_current_pads_dir());
if (dir) {
struct dirent* entry;
char first_pad_path[1024];
@@ -364,9 +363,10 @@ int load_preferences(void) {
while ((entry = readdir(dir)) != NULL && !found_pad) {
if (strstr(entry->d_name, ".pad") && strlen(entry->d_name) == 68) {
// Found a pad file - construct full absolute path
if (current_pads_dir[0] == '/') {
const char* pads_dir = get_current_pads_dir();
if (pads_dir[0] == '/') {
// Already absolute path
int ret = snprintf(first_pad_path, sizeof(first_pad_path), "%s/%s", current_pads_dir, entry->d_name);
int ret = snprintf(first_pad_path, sizeof(first_pad_path), "%s/%s", pads_dir, entry->d_name);
if (ret >= (int)sizeof(first_pad_path)) {
// Path was truncated, skip this entry
continue;
@@ -375,14 +375,14 @@ int load_preferences(void) {
// Relative path - make it absolute
char current_dir[512];
if (getcwd(current_dir, sizeof(current_dir))) {
int ret = snprintf(first_pad_path, sizeof(first_pad_path), "%s/%s/%s", current_dir, current_pads_dir, entry->d_name);
int ret = snprintf(first_pad_path, sizeof(first_pad_path), "%s/%s/%s", current_dir, pads_dir, entry->d_name);
if (ret >= (int)sizeof(first_pad_path)) {
// Path was truncated, skip this entry
continue;
}
} else {
// Fallback to relative path
int ret = snprintf(first_pad_path, sizeof(first_pad_path), "%s/%s", current_pads_dir, entry->d_name);
int ret = snprintf(first_pad_path, sizeof(first_pad_path), "%s/%s", pads_dir, entry->d_name);
if (ret >= (int)sizeof(first_pad_path)) {
// Path was truncated, skip this entry
continue;
@@ -641,7 +641,7 @@ void get_directory_display(const char* file_path, char* result, size_t result_si
}
// Current working directory
if (strcmp(dir_path, ".") == 0 || strcmp(dir_path, current_pads_dir) == 0) {
if (strcmp(dir_path, ".") == 0 || strcmp(dir_path, get_current_pads_dir()) == 0) {
strncpy(result, "pads", result_size - 1);
result[result_size - 1] = '\0';
return;

23
temp_device_test.c Normal file
View File

@@ -0,0 +1,23 @@
#include <stdio.h>
#include <stdlib.h>
#include "include/otp.h"
int main(int argc, char* argv[]) {
(void)argc; (void)argv;
hardware_rng_device_t devices[10];
int num_devices_found = 0;
if (detect_all_hardware_rng_devices(devices, 10, &num_devices_found) != 0) {
printf("ERROR: Device detection failed\n");
return 1;
}
printf("DEVICES_FOUND:%d\n", num_devices_found);
for (int i = 0; i < num_devices_found; i++) {
printf("DEVICE:%d:%s:%d:%s\n", i, devices[i].port_path, devices[i].device_type, devices[i].friendly_name);
}
return 0;
}

510
test.sh
View File

@@ -1,27 +1,499 @@
#!/bin/bash
echo "Testing OTP Cipher Implementation"
echo "================================="
# Hardware RNG Device Testing Script
# Tests all three detected hardware RNG devices for functionality
# Author: OTP Cipher Implementation
# Version: 1.0
# Test 1: Generate a pad
echo "Test 1: Generating pad..."
./otp generate test 2
set -e # Exit on any error
echo "========================================================================"
echo "Hardware RNG Device Testing Script - OTP Cipher v0.3.16"
echo "========================================================================"
echo
# Test 2: Check if files were created
echo "Test 2: Checking generated files..."
ls -la test.pad test.state
echo
# Colors for output
RED='\033[0;31m'
GREEN='\033[0;32m'
YELLOW='\033[1;33m'
BLUE='\033[0;34m'
NC='\033[0m' # No Color
# Test 3: Test encryption
echo "Test 3: Testing encryption..."
echo "Secret Message" | ./otp encrypt test > encrypted_output.txt
cat encrypted_output.txt
echo
# Test counters
TOTAL_TESTS=0
PASSED_TESTS=0
FAILED_TESTS=0
# Test 4: Test decryption
echo "Test 4: Testing decryption..."
cat encrypted_output.txt | ./otp decrypt test
echo
# Function to print test results
print_result() {
local test_name="$1"
local result="$2"
local details="$3"
TOTAL_TESTS=$((TOTAL_TESTS + 1))
if [ "$result" = "PASS" ]; then
echo -e "${GREEN}✓ PASS${NC}: $test_name"
PASSED_TESTS=$((PASSED_TESTS + 1))
elif [ "$result" = "FAIL" ]; then
echo -e "${RED}✗ FAIL${NC}: $test_name"
FAILED_TESTS=$((FAILED_TESTS + 1))
if [ -n "$details" ]; then
echo -e " ${RED}Error:${NC} $details"
fi
elif [ "$result" = "SKIP" ]; then
echo -e "${YELLOW}⚠ SKIP${NC}: $test_name"
if [ -n "$details" ]; then
echo -e " ${YELLOW}Reason:${NC} $details"
fi
fi
}
echo "Tests completed!"
# Function to test device detection
test_device_detection() {
echo -e "${BLUE}=== Device Detection Tests ===${NC}"
echo
# Test 1: Check if devices are detected
echo "Scanning for hardware RNG devices..."
# Create a temporary test program to check device detection
cat > temp_device_test.c << 'EOF'
#include <stdio.h>
#include <stdlib.h>
#include "include/otp.h"
int main(int argc, char* argv[]) {
(void)argc; (void)argv; // Suppress unused parameter warnings
hardware_rng_device_t devices[10];
int num_devices_found = 0;
if (detect_all_hardware_rng_devices(devices, 10, &num_devices_found) != 0) {
printf("ERROR: Device detection failed\n");
return 1;
}
printf("DEVICES_FOUND:%d\n", num_devices_found);
for (int i = 0; i < num_devices_found; i++) {
printf("DEVICE:%d:%s:%d:%s\n", i, devices[i].port_path, devices[i].device_type, devices[i].friendly_name);
}
return 0;
}
EOF
# Compile the test program
if gcc -Wall -Wextra -std=c99 -Iinclude -o temp_device_test temp_device_test.c src/trng.o src/util.o src/state.o src/pads.o src/crypto.o src/entropy.o src/ui.o nostr_chacha20.o -lm 2>/dev/null; then
# Run device detection
DEVICE_OUTPUT=$(./temp_device_test 2>/dev/null)
DEVICE_COUNT=$(echo "$DEVICE_OUTPUT" | grep "DEVICES_FOUND:" | cut -d: -f2)
if [ "$DEVICE_COUNT" -gt 0 ]; then
print_result "Hardware RNG device detection" "PASS" "Found $DEVICE_COUNT devices"
# Parse device information
echo "$DEVICE_OUTPUT" | grep "DEVICE:" | while IFS=: read -r prefix index port_path device_type friendly_name; do
echo " Device $index: $friendly_name at $port_path (Type: $device_type)"
done
echo
# Store device info for later tests
echo "$DEVICE_OUTPUT" > temp_devices.txt
else
print_result "Hardware RNG device detection" "FAIL" "No devices found"
echo " Expected devices: TrueRNG, SwiftRNG variants"
echo " Check USB connections and device permissions"
echo
fi
# Clean up
rm -f temp_device_test temp_device_test.c
else
print_result "Device detection compilation" "FAIL" "Could not compile test program"
fi
}
# Function to test individual device connectivity
test_device_connectivity() {
echo -e "${BLUE}=== Device Connectivity Tests ===${NC}"
echo
if [ ! -f temp_devices.txt ]; then
print_result "Device connectivity tests" "SKIP" "No devices detected in previous test"
return
fi
DEVICE_COUNT=$(grep "DEVICES_FOUND:" temp_devices.txt | cut -d: -f2)
if [ "$DEVICE_COUNT" -eq 0 ]; then
print_result "Device connectivity tests" "SKIP" "No devices available for testing"
return
fi
# Test each detected device
grep "DEVICE:" temp_devices.txt | while IFS=: read -r prefix index port_path device_type friendly_name; do
echo "Testing device: $friendly_name at $port_path"
# Create device-specific test
cat > temp_connectivity_test.c << 'EOF'
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <time.h>
#include "include/otp.h"
int main(int argc, char* argv[]) {
if (argc != 4) {
printf("Usage: %s <port_path> <device_type> <friendly_name>\n", argv[0]);
return 1;
}
hardware_rng_device_t device;
snprintf(device.port_path, sizeof(device.port_path), "%s", argv[1]);
device.device_type = atoi(argv[2]);
snprintf(device.friendly_name, sizeof(device.friendly_name), "%s", argv[3]);
device.is_working = 0;
// Test with small buffer (1KB) and short timeout
const size_t test_bytes = 1024;
unsigned char* test_buffer = malloc(test_bytes);
if (!test_buffer) {
printf("ERROR: Cannot allocate test buffer\n");
return 1;
}
size_t collected = 0;
time_t start_time = time(NULL);
printf("TESTING:%s\n", device.friendly_name);
// Test device connectivity with timeout
int result = collect_truerng_entropy_from_device(&device, test_buffer, test_bytes, &collected, 0);
time_t end_time = time(NULL);
double test_duration = difftime(end_time, start_time);
if (result == 0 && collected > 0) {
double speed_kbps = (collected / 1024.0) / (test_duration > 0 ? test_duration : 1.0);
printf("SUCCESS:%zu:%0.2f:%0.2f\n", collected, test_duration, speed_kbps);
} else {
printf("FAILED:%d:%zu:%0.2f\n", result, collected, test_duration);
}
free(test_buffer);
return 0;
}
EOF
# Compile and run connectivity test
if gcc -Wall -Wextra -std=c99 -Iinclude -o temp_connectivity_test temp_connectivity_test.c src/trng.o src/util.o src/state.o src/pads.o src/crypto.o src/entropy.o src/ui.o nostr_chacha20.o -lm 2>/dev/null; then
# Run test with timeout to prevent hanging
CONNECTIVITY_OUTPUT=$(timeout 30s ./temp_connectivity_test "$port_path" "$device_type" "$friendly_name" 2>/dev/null || echo "TIMEOUT")
if echo "$CONNECTIVITY_OUTPUT" | grep -q "SUCCESS:"; then
# Parse success output
SUCCESS_LINE=$(echo "$CONNECTIVITY_OUTPUT" | grep "SUCCESS:")
COLLECTED=$(echo "$SUCCESS_LINE" | cut -d: -f2)
DURATION=$(echo "$SUCCESS_LINE" | cut -d: -f3)
SPEED=$(echo "$SUCCESS_LINE" | cut -d: -f4)
print_result "Device connectivity: $friendly_name" "PASS" "Collected ${COLLECTED} bytes in ${DURATION}s (${SPEED} KB/s)"
elif echo "$CONNECTIVITY_OUTPUT" | grep -q "FAILED:"; then
# Parse failure output
FAILED_LINE=$(echo "$CONNECTIVITY_OUTPUT" | grep "FAILED:")
ERROR_CODE=$(echo "$FAILED_LINE" | cut -d: -f2)
COLLECTED=$(echo "$FAILED_LINE" | cut -d: -f3)
print_result "Device connectivity: $friendly_name" "FAIL" "Error code $ERROR_CODE, collected $COLLECTED bytes"
elif echo "$CONNECTIVITY_OUTPUT" | grep -q "TIMEOUT"; then
print_result "Device connectivity: $friendly_name" "FAIL" "Test timed out after 30 seconds"
else
print_result "Device connectivity: $friendly_name" "FAIL" "Unexpected test output"
fi
else
print_result "Device connectivity test compilation: $friendly_name" "FAIL" "Could not compile test program"
fi
echo
done
# Clean up
rm -f temp_connectivity_test temp_connectivity_test.c
}
# Function to test device configuration
test_device_configuration() {
echo -e "${BLUE}=== Device Configuration Tests ===${NC}"
echo
if [ ! -f temp_devices.txt ]; then
print_result "Device configuration tests" "SKIP" "No devices detected"
return
fi
# Test serial port configuration for each device type
grep "DEVICE:" temp_devices.txt | while IFS=: read -r prefix index port_path device_type friendly_name; do
echo "Testing serial configuration for: $friendly_name"
# Create configuration test
cat > temp_config_test.c << 'EOF'
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <unistd.h>
#include <termios.h>
#include "include/otp.h"
int main(int argc, char* argv[]) {
if (argc != 3) {
printf("Usage: %s <port_path> <device_type>\n", argv[0]);
return 1;
}
const char* port_path = argv[1];
hardware_rng_device_type_t device_type = atoi(argv[2]);
printf("TESTING_CONFIG:%s:%d\n", port_path, device_type);
// Test opening the device
int fd = open(port_path, O_RDONLY | O_NOCTTY | O_NONBLOCK);
if (fd < 0) {
printf("FAILED:Cannot open device\n");
return 1;
}
// Test configuring the serial port
int config_result = configure_rng_serial_port(fd, device_type);
if (config_result == 0) {
printf("SUCCESS:Serial port configured successfully\n");
} else {
printf("FAILED:Serial port configuration failed\n");
}
close(fd);
return 0;
}
EOF
# Compile and run configuration test
if gcc -Wall -Wextra -std=c99 -Iinclude -o temp_config_test temp_config_test.c src/trng.o src/util.o src/state.o src/ui.o -lm 2>/dev/null; then
CONFIG_OUTPUT=$(./temp_config_test "$port_path" "$device_type" 2>/dev/null || echo "ERROR")
if echo "$CONFIG_OUTPUT" | grep -q "SUCCESS:"; then
print_result "Serial configuration: $friendly_name" "PASS" "Port configured successfully"
elif echo "$CONFIG_OUTPUT" | grep -q "FAILED:"; then
REASON=$(echo "$CONFIG_OUTPUT" | grep "FAILED:" | cut -d: -f2)
print_result "Serial configuration: $friendly_name" "FAIL" "$REASON"
else
print_result "Serial configuration: $friendly_name" "FAIL" "Unexpected configuration result"
fi
else
print_result "Configuration test compilation: $friendly_name" "FAIL" "Could not compile test program"
fi
done
echo
# Clean up
rm -f temp_config_test temp_config_test.c
}
# Function to test entropy quality
test_entropy_quality() {
echo -e "${BLUE}=== Entropy Quality Tests ===${NC}"
echo
if [ ! -f temp_devices.txt ]; then
print_result "Entropy quality tests" "SKIP" "No devices detected"
return
fi
# Test entropy quality for working devices
grep "DEVICE:" temp_devices.txt | while IFS=: read -r prefix index port_path device_type friendly_name; do
echo "Testing entropy quality for: $friendly_name"
# Create entropy quality test
cat > temp_quality_test.c << 'EOF'
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include "include/otp.h"
// Simple entropy quality check
double calculate_byte_entropy(unsigned char* data, size_t length) {
int counts[256] = {0};
double entropy = 0.0;
// Count byte frequencies
for (size_t i = 0; i < length; i++) {
counts[data[i]]++;
}
// Calculate Shannon entropy
for (int i = 0; i < 256; i++) {
if (counts[i] > 0) {
double p = (double)counts[i] / length;
entropy -= p * log2(p);
}
}
return entropy;
}
int main(int argc, char* argv[]) {
if (argc != 4) {
printf("Usage: %s <port_path> <device_type> <friendly_name>\n", argv[0]);
return 1;
}
hardware_rng_device_t device;
snprintf(device.port_path, sizeof(device.port_path), "%s", argv[1]);
device.device_type = atoi(argv[2]);
snprintf(device.friendly_name, sizeof(device.friendly_name), "%s", argv[3]);
// Test with 4KB sample
const size_t test_bytes = 4096;
unsigned char* test_buffer = malloc(test_bytes);
if (!test_buffer) {
printf("ERROR: Cannot allocate test buffer\n");
return 1;
}
size_t collected = 0;
printf("TESTING_QUALITY:%s\n", device.friendly_name);
// Collect entropy sample
int result = collect_truerng_entropy_from_device(&device, test_buffer, test_bytes, &collected, 0);
if (result == 0 && collected >= 1024) { // Need at least 1KB for meaningful analysis
double entropy = calculate_byte_entropy(test_buffer, collected);
double entropy_percentage = (entropy / 8.0) * 100.0; // Max entropy is 8 bits per byte
if (entropy_percentage >= 95.0) {
printf("EXCELLENT:%0.2f:%zu\n", entropy_percentage, collected);
} else if (entropy_percentage >= 85.0) {
printf("GOOD:%0.2f:%zu\n", entropy_percentage, collected);
} else if (entropy_percentage >= 70.0) {
printf("FAIR:%0.2f:%zu\n", entropy_percentage, collected);
} else {
printf("POOR:%0.2f:%zu\n", entropy_percentage, collected);
}
} else {
printf("FAILED:%d:%zu\n", result, collected);
}
free(test_buffer);
return 0;
}
EOF
# Compile and run quality test
if gcc -Wall -Wextra -std=c99 -Iinclude -o temp_quality_test temp_quality_test.c src/trng.o src/util.o src/state.o src/ui.o -lm 2>/dev/null; then
QUALITY_OUTPUT=$(timeout 30s ./temp_quality_test "$port_path" "$device_type" "$friendly_name" 2>/dev/null || echo "TIMEOUT")
if echo "$QUALITY_OUTPUT" | grep -q "EXCELLENT:"; then
QUALITY_LINE=$(echo "$QUALITY_OUTPUT" | grep "EXCELLENT:")
PERCENTAGE=$(echo "$QUALITY_LINE" | cut -d: -f2)
BYTES=$(echo "$QUALITY_LINE" | cut -d: -f3)
print_result "Entropy quality: $friendly_name" "PASS" "Excellent quality (${PERCENTAGE}% entropy, ${BYTES} bytes)"
elif echo "$QUALITY_OUTPUT" | grep -q "GOOD:"; then
QUALITY_LINE=$(echo "$QUALITY_OUTPUT" | grep "GOOD:")
PERCENTAGE=$(echo "$QUALITY_LINE" | cut -d: -f2)
BYTES=$(echo "$QUALITY_LINE" | cut -d: -f3)
print_result "Entropy quality: $friendly_name" "PASS" "Good quality (${PERCENTAGE}% entropy, ${BYTES} bytes)"
elif echo "$QUALITY_OUTPUT" | grep -q "FAIR:"; then
QUALITY_LINE=$(echo "$QUALITY_OUTPUT" | grep "FAIR:")
PERCENTAGE=$(echo "$QUALITY_LINE" | cut -d: -f2)
BYTES=$(echo "$QUALITY_LINE" | cut -d: -f3)
print_result "Entropy quality: $friendly_name" "PASS" "Fair quality (${PERCENTAGE}% entropy, ${BYTES} bytes)"
elif echo "$QUALITY_OUTPUT" | grep -q "POOR:"; then
QUALITY_LINE=$(echo "$QUALITY_OUTPUT" | grep "POOR:")
PERCENTAGE=$(echo "$QUALITY_LINE" | cut -d: -f2)
BYTES=$(echo "$QUALITY_LINE" | cut -d: -f3)
print_result "Entropy quality: $friendly_name" "FAIL" "Poor quality (${PERCENTAGE}% entropy, ${BYTES} bytes)"
elif echo "$QUALITY_OUTPUT" | grep -q "FAILED:"; then
print_result "Entropy quality: $friendly_name" "FAIL" "Could not collect sufficient entropy for analysis"
elif echo "$QUALITY_OUTPUT" | grep -q "TIMEOUT"; then
print_result "Entropy quality: $friendly_name" "FAIL" "Quality test timed out"
else
print_result "Entropy quality: $friendly_name" "FAIL" "Unexpected quality test output"
fi
else
print_result "Quality test compilation: $friendly_name" "FAIL" "Could not compile test program"
fi
done
echo
# Clean up
rm -f temp_quality_test temp_quality_test.c
}
# Function to print final summary
print_summary() {
echo
echo "========================================================================"
echo -e "${BLUE}Test Summary${NC}"
echo "========================================================================"
echo "Total tests run: $TOTAL_TESTS"
echo -e "Passed: ${GREEN}$PASSED_TESTS${NC}"
echo -e "Failed: ${RED}$FAILED_TESTS${NC}"
echo -e "Success rate: $(( (PASSED_TESTS * 100) / (TOTAL_TESTS > 0 ? TOTAL_TESTS : 1) ))%"
echo
if [ $FAILED_TESTS -eq 0 ]; then
echo -e "${GREEN}🎉 All tests passed! Hardware RNG devices are working correctly.${NC}"
elif [ $PASSED_TESTS -gt $FAILED_TESTS ]; then
echo -e "${YELLOW}⚠ Some tests failed, but most devices are working.${NC}"
echo "Check the failed tests above for specific device issues."
else
echo -e "${RED}❌ Multiple test failures detected.${NC}"
echo "Hardware RNG devices may have connectivity or configuration issues."
fi
echo
}
# Main test execution
main() {
echo "Starting comprehensive hardware RNG device testing..."
echo "This will test device detection, connectivity, configuration, and entropy quality."
echo
# Ensure the OTP binary exists
if [ ! -f "./otp" ]; then
echo -e "${RED}Error: OTP binary not found. Please run 'make' first.${NC}"
exit 1
fi
# Run all test suites
test_device_detection
test_device_connectivity
test_device_configuration
test_entropy_quality
# Clean up temporary files
rm -f temp_devices.txt
# Print final summary
print_summary
}
# Run main function
main "$@"

BIN
test_swiftrng Executable file

Binary file not shown.

BIN
test_swiftrng_debug Executable file

Binary file not shown.

BIN
test_swiftrng_detailed Executable file

Binary file not shown.

BIN
test_truerng Executable file

Binary file not shown.

55
test_truerng.c Normal file
View File

@@ -0,0 +1,55 @@
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <time.h>
#include "include/otp.h"
int main(int argc, char* argv[]) {
(void)argc; (void)argv; // Suppress unused parameter warnings
hardware_rng_device_t device;
snprintf(device.port_path, sizeof(device.port_path), "/dev/ttyUSB0");
device.device_type = TRUERNG_ORIGINAL;
snprintf(device.friendly_name, sizeof(device.friendly_name), "TrueRNG");
device.is_working = 1;
printf("Debug: Device type set to: %d (TRUERNG_ORIGINAL should be %d)\n", device.device_type, TRUERNG_ORIGINAL);
printf("Debug: Comparison result: device.device_type == SWIFTRNG is %s\n",
(device.device_type == SWIFTRNG) ? "TRUE" : "FALSE");
// Test with small buffer (1KB) and short timeout
const size_t test_bytes = 1024;
unsigned char* test_buffer = malloc(test_bytes);
if (!test_buffer) {
printf("ERROR: Cannot allocate test buffer\n");
return 1;
}
size_t collected = 0;
time_t start_time = time(NULL);
printf("Testing TrueRNG device at %s...\n", device.port_path);
// Test device connectivity with timeout
int result = collect_truerng_entropy_from_device(&device, test_buffer, test_bytes, &collected, 1);
time_t end_time = time(NULL);
double test_duration = difftime(end_time, start_time);
if (result == 0 && collected > 0) {
double speed_kbps = (collected / 1024.0) / (test_duration > 0 ? test_duration : 1.0);
printf("SUCCESS: Collected %zu bytes in %.2f seconds (%.2f KB/s)\n", collected, test_duration, speed_kbps);
// Show first few bytes as hex
printf("First 16 bytes: ");
for (int i = 0; i < 16 && i < (int)collected; i++) {
printf("%02x ", test_buffer[i]);
}
printf("\n");
} else {
printf("FAILED: Error code %d, collected %zu bytes in %.2f seconds\n", result, collected, test_duration);
}
free(test_buffer);
return result;
}