Compare commits

...

6 Commits

12 changed files with 558 additions and 99 deletions

View File

@@ -2,7 +2,7 @@
## Introduction
A secure one-time pad (OTP) cipher implementation in C.
A secure one-time pad (OTP) cipher implementation in C99.
## Why One-Time Pads
@@ -58,43 +58,40 @@ One-time pads can be trivially encrypted and decrypted using pencil and paper, m
### Download Pre-Built Binaries
**[Download Current Linux x86](https://git.laantungir.net/laantungir/otp/releases/download/v0.3.31/otp-v0.3.31-linux-x86_64)**
**[Download Current Linux x86](https://git.laantungir.net/laantungir/otp/releases/download/v0.3.37/otp-v0.3.37-linux-x86_64)**
**[Download Current Raspberry Pi 64](https://git.laantungir.net/laantungir/otp/releases/download/v0.3.31/otp-v0.3.31-linux-arm64)**
**[Download Current Raspberry Pi 64](https://git.laantungir.net/laantungir/otp/releases/download/v0.3.37/otp-v0.3.37-linux-arm64)**
After downloading:
```bash
# Make executable and run
chmod +x otp-v0.3.31-linux-x86_64
./otp-v0.3.31-linux-x86_64
```
# Rename for convenience, then make executable
mv otp-v0.3.37-linux-x86_64 otp
chmod +x otp
# Run it
./otp
```
### First Steps
1. **Generate your first pad:**
```bash
./otp-v0.3.31-linux-x86_64 generate 1GB
./otp generate 1GB
```
2. **Encrypt a message:**
```bash
./otp-v0.3.31-linux-x86_64 encrypt
./otp encrypt
# Follow the interactive prompts
```
3. **Decrypt a message:**
```bash
./otp-v0.3.31-linux-x86_64 decrypt
./otp decrypt
# Paste the encrypted message
```
## Building from Source
### Prerequisites
@@ -121,28 +118,38 @@ After building, run with:
## Usage
### Interactive Mode
```bash
# If you downloaded the binary:
./otp-v0.3.31-linux-x86_64
The OTP Cipher operates in two modes:
# If you built from source:
./build/otp-x86_64
**Interactive Mode**: Run without arguments to access a menu-driven interface. Best for exploring features, managing pads, and performing operations step-by-step with prompts and guidance.
**Command Line Mode**: Provide arguments to execute specific operations directly. Ideal for scripting, automation, and quick one-off tasks.
### Interactive Mode
Launch the menu-driven interface:
```bash
./otp
```
Navigate through menus to generate pads, encrypt/decrypt messages, manage pads, and configure settings.
### Command Line Mode
Execute operations directly with arguments:
```bash
# Generate a new pad
./otp-v0.3.31-linux-x86_64 generate 1GB
./otp generate 1GB
# Encrypt text (interactive input)
./otp-v0.3.31-linux-x86_64 encrypt <pad_hash_or_prefix>
# Encrypt text (will prompt for input)
./otp encrypt <pad_hash_or_prefix>
# Decrypt message (interactive input)
./otp-v0.3.31-linux-x86_64 decrypt <pad_hash_or_prefix>
# Decrypt message (will prompt for input)
./otp decrypt <pad_hash_or_prefix>
# List available pads
./otp-v0.3.31-linux-x86_64 list
./otp list
```
## Version System
@@ -424,6 +431,28 @@ No. ChkSum (first 16 chars) Size Used % Used
# Select "S" for show pad info, enter checksum or prefix
```
## Important Notes
### Size Units: Decimal (SI) vs Binary (IEC)
**This program uses decimal (SI) units for all size specifications**, matching the behavior of most system tools like `ls -lh`, `df -h`, and file managers:
- **1 KB** = 1,000 bytes (not 1,024)
- **1 MB** = 1,000,000 bytes (not 1,048,576)
- **1 GB** = 1,000,000,000 bytes (not 1,073,741,824)
- **1 TB** = 1,000,000,000,000 bytes (not 1,099,511,627,776)
**Why decimal units?**
- Consistency with system tools (`ls`, `df`, file managers)
- Matches storage device marketing (a "1TB" USB drive has ~1,000,000,000,000 bytes)
- Avoids confusion when comparing sizes across different tools
- Industry standard for storage devices and file systems
**Example:** When you request a 100GB pad, the program creates exactly 100,000,000,000 bytes, which will display as "100GB" in `ls -lh` and your file manager.
**Note:** Some technical tools may use binary units (GiB, MiB) where 1 GiB = 1,024³ bytes. This program intentionally uses decimal units for user-friendliness and consistency with common tools.
## License
This project includes automatic versioning system based on the Generic Automatic Version Increment System.

View File

@@ -169,9 +169,12 @@ update_source_version() {
After downloading:
\`\`\`bash
# Make executable and run
chmod +x otp-${NEW_VERSION}-linux-x86_64
./otp-${NEW_VERSION}-linux-x86_64
# Rename for convenience, then make executable
mv otp-${NEW_VERSION}-linux-x86_64 otp
chmod +x otp
# Run it
./otp
\`\`\`"
# Use awk to replace the section between "### Download Pre-Built Binaries" and "### First Steps"

View File

@@ -82,7 +82,7 @@ int add_entropy_direct_xor(const char* pad_chksum, const unsigned char* entropy_
if (display_progress) {
printf("Adding entropy to pad using direct XOR...\n");
printf("Pad size: %.2f GB (%lu bytes)\n", (double)pad_size / (1024.0*1024.0*1024.0), pad_size);
printf("Pad size: %.2f GB (%lu bytes)\n", (double)pad_size / (1000.0*1000.0*1000.0), pad_size);
printf("Entropy size: %zu bytes\n", entropy_size);
}
@@ -212,15 +212,29 @@ int add_entropy_chacha20(const char* pad_chksum, const unsigned char* entropy_da
if (display_progress) {
printf("Adding entropy to pad using Chacha20...\n");
printf("Pad size: %.2f GB (%lu bytes)\n", (double)pad_size / (1024.0*1024.0*1024.0), pad_size);
printf("Pad size: %.2f GB (%lu bytes)\n", (double)pad_size / (1000.0*1000.0*1000.0), pad_size);
}
// Process pad in chunks
unsigned char buffer[64 * 1024]; // 64KB chunks
unsigned char keystream[64 * 1024];
uint64_t offset = 0;
uint32_t counter = 0;
uint32_t counter_low = 0;
uint32_t counter_high = 0;
time_t start_time = time(NULL);
// Use extended counter for pads larger than 256GB
// 256GB = 2^32 blocks * 64 bytes = 274,877,906,944 bytes
int use_extended = (pad_size > 274877906944ULL);
// For extended mode, use reduced 8-byte nonce
unsigned char nonce_reduced[8];
if (use_extended) {
memcpy(nonce_reduced, nonce + 4, 8);
if (display_progress) {
printf("Using extended counter mode for large pad (>256GB)\n");
}
}
while (offset < pad_size) {
size_t chunk_size = sizeof(buffer);
@@ -237,7 +251,15 @@ int add_entropy_chacha20(const char* pad_chksum, const unsigned char* entropy_da
}
// Generate keystream for this chunk
if (chacha20_encrypt(key, counter, nonce, buffer, keystream, chunk_size) != 0) {
int chacha_result;
if (use_extended) {
chacha_result = chacha20_encrypt_extended(key, counter_low, counter_high,
nonce_reduced, buffer, keystream, chunk_size);
} else {
chacha_result = chacha20_encrypt(key, counter_low, nonce, buffer, keystream, chunk_size);
}
if (chacha_result != 0) {
printf("Error: Chacha20 keystream generation failed\n");
fclose(pad_file);
chmod(pad_path, S_IRUSR);
@@ -265,7 +287,16 @@ int add_entropy_chacha20(const char* pad_chksum, const unsigned char* entropy_da
}
offset += chunk_size;
counter += (chunk_size + 63) / 64; // Round up for block count
// Update counters
uint32_t blocks = (chunk_size + 63) / 64; // Round up for block count
uint32_t old_counter_low = counter_low;
counter_low += blocks;
// Check for overflow and increment high counter
if (counter_low < old_counter_low) {
counter_high++;
}
// Show progress for large pads
if (display_progress && offset % (64 * 1024 * 1024) == 0) { // Every 64MB
@@ -282,7 +313,8 @@ int add_entropy_chacha20(const char* pad_chksum, const unsigned char* entropy_da
if (display_progress) {
show_progress(pad_size, pad_size, start_time);
printf("\n✓ Entropy successfully added to pad using Chacha20\n");
printf("\n✓ Entropy successfully added to pad using Chacha20%s\n",
use_extended ? " (extended counter)" : "");
printf("✓ Pad integrity maintained\n");
printf("✓ %zu bytes of entropy distributed across entire pad\n", entropy_size);
printf("✓ Pad restored to read-only mode\n");
@@ -593,8 +625,8 @@ int add_file_entropy_streaming(const char* pad_chksum, const char* file_path, si
if (display_progress) {
printf("Adding entropy to pad using streaming direct XOR...\n");
printf("Pad size: %.2f GB (%lu bytes)\n", (double)pad_size / (1024.0*1024.0*1024.0), pad_size);
printf("Entropy file: %.2f GB (%zu bytes)\n", (double)file_size / (1024.0*1024.0*1024.0), file_size);
printf("Pad size: %.2f GB (%lu bytes)\n", (double)pad_size / (1000.0*1000.0*1000.0), pad_size);
printf("Entropy file: %.2f GB (%zu bytes)\n", (double)file_size / (1000.0*1000.0*1000.0), file_size);
}
// Process in chunks

View File

@@ -23,7 +23,7 @@
#include <ctype.h>
// Version - Updated automatically by build.sh
#define OTP_VERSION "v0.3.31"
#define OTP_VERSION "v0.3.37"
// Constants
#define MAX_INPUT_SIZE 4096

View File

@@ -129,8 +129,8 @@ int chacha20_block(const uint8_t key[32], uint32_t counter,
return 0;
}
int chacha20_encrypt(const uint8_t key[32], uint32_t counter,
const uint8_t nonce[12], const uint8_t* input,
int chacha20_encrypt(const uint8_t key[32], uint32_t counter,
const uint8_t nonce[12], const uint8_t* input,
uint8_t* output, size_t length) {
uint8_t keystream[CHACHA20_BLOCK_SIZE];
size_t offset = 0;
@@ -161,3 +161,45 @@ int chacha20_encrypt(const uint8_t key[32], uint32_t counter,
return 0;
}
int chacha20_encrypt_extended(const uint8_t key[32], uint32_t counter_low,
uint32_t counter_high, const uint8_t nonce[8],
const uint8_t* input, uint8_t* output, size_t length) {
uint8_t keystream[CHACHA20_BLOCK_SIZE];
uint8_t extended_nonce[12];
size_t offset = 0;
while (length > 0) {
/* Build extended 12-byte nonce: [counter_high (4 bytes)][nonce (8 bytes)] */
u32_to_bytes_le(counter_high, extended_nonce);
memcpy(extended_nonce + 4, nonce, 8);
/* Generate keystream block using extended nonce */
int ret = chacha20_block(key, counter_low, extended_nonce, keystream);
if (ret != 0) {
return ret;
}
/* XOR with input to produce output */
size_t block_len = (length < CHACHA20_BLOCK_SIZE) ? length : CHACHA20_BLOCK_SIZE;
for (size_t i = 0; i < block_len; i++) {
output[offset + i] = input[offset + i] ^ keystream[i];
}
/* Move to next block */
offset += block_len;
length -= block_len;
counter_low++;
/* Check for counter_low overflow and increment counter_high */
if (counter_low == 0) {
counter_high++;
/* Check for counter_high overflow (extremely unlikely - > 1 exabyte) */
if (counter_high == 0) {
return -1; /* Extended counter wrapped around */
}
}
}
return 0;
}

View File

@@ -63,10 +63,10 @@ int chacha20_block(const uint8_t key[32], uint32_t counter,
/**
* ChaCha20 encryption/decryption
*
*
* Encrypts or decrypts data using ChaCha20 stream cipher.
* Since ChaCha20 is a stream cipher, encryption and decryption are the same operation.
*
*
* @param key[in] 32-byte key
* @param counter[in] Initial 32-bit counter value
* @param nonce[in] 12-byte nonce
@@ -75,10 +75,29 @@ int chacha20_block(const uint8_t key[32], uint32_t counter,
* @param length[in] Length of input data in bytes
* @return 0 on success, negative on error
*/
int chacha20_encrypt(const uint8_t key[32], uint32_t counter,
const uint8_t nonce[12], const uint8_t* input,
int chacha20_encrypt(const uint8_t key[32], uint32_t counter,
const uint8_t nonce[12], const uint8_t* input,
uint8_t* output, size_t length);
/**
* ChaCha20 encryption/decryption with extended counter (64-bit)
*
* Extended version that supports files larger than 256GB by using
* part of the nonce as a high-order counter extension.
*
* @param key[in] 32-byte key
* @param counter_low[in] Initial 32-bit counter value (low bits)
* @param counter_high[in] Initial 32-bit counter value (high bits)
* @param nonce[in] 8-byte reduced nonce (instead of 12)
* @param input[in] Input data to encrypt/decrypt
* @param output[out] Output buffer (can be same as input)
* @param length[in] Length of input data in bytes
* @return 0 on success, negative on error
*/
int chacha20_encrypt_extended(const uint8_t key[32], uint32_t counter_low,
uint32_t counter_high, const uint8_t nonce[8],
const uint8_t* input, uint8_t* output, size_t length);
/*
* ============================================================================
* UTILITY FUNCTIONS

View File

@@ -43,9 +43,9 @@ int show_pad_info(const char* chksum) {
printf("ChkSum: %s\n", chksum);
printf("File: %s\n", pad_filename);
double size_gb = (double)st.st_size / (1024.0 * 1024.0 * 1024.0);
double used_gb = (double)used_bytes / (1024.0 * 1024.0 * 1024.0);
double remaining_gb = (double)(st.st_size - used_bytes) / (1024.0 * 1024.0 * 1024.0);
double size_gb = (double)st.st_size / (1000.0 * 1000.0 * 1000.0);
double used_gb = (double)used_bytes / (1000.0 * 1000.0 * 1000.0);
double remaining_gb = (double)(st.st_size - used_bytes) / (1000.0 * 1000.0 * 1000.0);
printf("Total size: %.2f GB (%lu bytes)\n", size_gb, st.st_size);
printf("Used: %.2f GB (%lu bytes)\n", used_gb, used_bytes);
@@ -89,18 +89,18 @@ int generate_pad(uint64_t size_bytes, int display_progress) {
const char* pads_dir = get_current_pads_dir();
struct statvfs stat;
if (statvfs(pads_dir, &stat) == 0) {
// Use f_bfree (total free blocks) instead of f_bavail (available to non-root)
// This gives the actual free space on the filesystem, which is more accurate
// for removable media and user-owned directories
uint64_t available_bytes = stat.f_bfree * stat.f_frsize;
double available_gb = (double)available_bytes / (1024.0 * 1024.0 * 1024.0);
double required_gb = (double)size_bytes / (1024.0 * 1024.0 * 1024.0);
// Use f_bavail (available to non-root users) for accurate space reporting
// This accounts for filesystem reserved space (e.g., 5% on ext4)
uint64_t available_bytes = stat.f_bavail * stat.f_frsize;
double available_gb = (double)available_bytes / (1000.0 * 1000.0 * 1000.0);
double required_gb = (double)size_bytes / (1000.0 * 1000.0 * 1000.0);
if (available_bytes < size_bytes) {
printf("\n⚠ WARNING: Insufficient disk space!\n");
printf(" Required: %.2f GB\n", required_gb);
printf(" Available: %.2f GB\n", available_gb);
printf(" Required: %.2f GB (%lu bytes)\n", required_gb, size_bytes);
printf(" Available: %.2f GB (%lu bytes)\n", available_gb, available_bytes);
printf(" Shortfall: %.2f GB\n", required_gb - available_gb);
printf(" Location: %s\n", pads_dir);
printf("\nContinue anyway? (y/N): ");
char response[10];
@@ -129,11 +129,54 @@ int generate_pad(uint64_t size_bytes, int display_progress) {
FILE* pad_file = fopen(temp_filename, "wb");
if (!pad_file) {
printf("Error: Cannot create temporary pad file %s\n", temp_filename);
printf("Error: Cannot create temporary pad file '%s': %s (errno %d)\n",
temp_filename, strerror(errno), errno);
fclose(urandom);
return 1;
}
// Preallocate full file size using posix_fallocate for guaranteed space reservation
// This actually allocates disk blocks (unlike ftruncate which creates sparse files)
int fd = fileno(pad_file);
double size_gb = (double)size_bytes / (1000.0 * 1000.0 * 1000.0);
if (display_progress) {
printf("Allocating %.2f GB on disk...\n", size_gb);
}
int alloc_result = posix_fallocate(fd, 0, (off_t)size_bytes);
if (alloc_result != 0) {
printf("Error: Failed to allocate %.2f GB temp file: %s (errno %d)\n",
size_gb, strerror(alloc_result), alloc_result);
printf(" Temp file: %s\n", temp_filename);
printf(" Location: %s\n", pads_dir);
if (alloc_result == ENOSPC) {
printf(" Cause: No space left on device\n");
printf(" This means the actual available space is less than reported\n");
} else if (alloc_result == EOPNOTSUPP) {
printf(" Cause: Filesystem doesn't support posix_fallocate\n");
printf(" Falling back to ftruncate (sparse file)...\n");
if (ftruncate(fd, (off_t)size_bytes) != 0) {
printf(" Fallback failed: %s\n", strerror(errno));
fclose(pad_file);
fclose(urandom);
unlink(temp_filename);
return 1;
}
} else {
printf(" Possible causes: quota limits, filesystem restrictions\n");
fclose(pad_file);
fclose(urandom);
unlink(temp_filename);
return 1;
}
}
if (display_progress && alloc_result == 0) {
printf("✓ Allocated %.2f GB on disk (guaranteed space)\n", size_gb);
}
unsigned char buffer[64 * 1024]; // 64KB buffer
uint64_t bytes_written = 0;
time_t start_time = time(NULL);
@@ -149,7 +192,8 @@ int generate_pad(uint64_t size_bytes, int display_progress) {
}
if (fread(buffer, 1, (size_t)chunk_size, urandom) != (size_t)chunk_size) {
printf("Error: Failed to read from /dev/urandom\n");
printf("Error: Failed to read %lu bytes from /dev/urandom at position %lu: %s (errno %d)\n",
chunk_size, bytes_written, strerror(errno), errno);
fclose(urandom);
fclose(pad_file);
unlink(temp_filename);
@@ -157,7 +201,11 @@ int generate_pad(uint64_t size_bytes, int display_progress) {
}
if (fwrite(buffer, 1, (size_t)chunk_size, pad_file) != (size_t)chunk_size) {
printf("Error: Failed to write to pad file\n");
printf("Error: fwrite failed for %lu bytes at position %lu/%lu (%.1f%%): %s (errno %d)\n",
chunk_size, bytes_written, size_bytes,
(double)bytes_written / size_bytes * 100.0, strerror(errno), errno);
printf(" Temp file: %s\n", temp_filename);
printf(" Disk space was checked - possible causes: fragmentation, I/O timeout, quota\n");
fclose(urandom);
fclose(pad_file);
unlink(temp_filename);
@@ -216,8 +264,10 @@ int generate_pad(uint64_t size_bytes, int display_progress) {
return 1;
}
double size_gb = (double)size_bytes / (1024.0 * 1024.0 * 1024.0);
printf("Generated pad: %s (%.2f GB)\n", pad_path, size_gb);
if (display_progress) {
double final_size_gb = (double)size_bytes / (1000.0 * 1000.0 * 1000.0);
printf("Generated pad: %s (%.2f GB)\n", pad_path, final_size_gb);
}
printf("Pad checksum: %s\n", chksum_hex);
printf("State file: %s\n", state_path);
printf("Pad file set to read-only\n");
@@ -384,25 +434,25 @@ char* select_pad_interactive(const char* title, const char* prompt, pad_filter_t
}
// Format total size
if (st.st_size < 1024) {
if (st.st_size < 1000) {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%luB", st.st_size);
} else if (st.st_size < 1024 * 1024) {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.1fKB", (double)st.st_size / 1024.0);
} else if (st.st_size < 1024 * 1024 * 1024) {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.1fMB", (double)st.st_size / (1024.0 * 1024.0));
} else if (st.st_size < 1000 * 1000) {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.1fKB", (double)st.st_size / 1000.0);
} else if (st.st_size < 1000 * 1000 * 1000) {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.1fMB", (double)st.st_size / (1000.0 * 1000.0));
} else {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.2fGB", (double)st.st_size / (1024.0 * 1024.0 * 1024.0));
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.2fGB", (double)st.st_size / (1000.0 * 1000.0 * 1000.0));
}
// Format used size
if (used_bytes < 1024) {
if (used_bytes < 1000) {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%luB", used_bytes);
} else if (used_bytes < 1024 * 1024) {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.1fKB", (double)used_bytes / 1024.0);
} else if (used_bytes < 1024 * 1024 * 1024) {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.1fMB", (double)used_bytes / (1024.0 * 1024.0));
} else if (used_bytes < 1000 * 1000) {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.1fKB", (double)used_bytes / 1000.0);
} else if (used_bytes < 1000 * 1000 * 1000) {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.1fMB", (double)used_bytes / (1000.0 * 1000.0));
} else {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.2fGB", (double)used_bytes / (1024.0 * 1024.0 * 1024.0));
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.2fGB", (double)used_bytes / (1000.0 * 1000.0 * 1000.0));
}
// Calculate percentage
@@ -584,6 +634,27 @@ int handle_pads_menu(void) {
// Get list of pads from current directory
const char* pads_dir = get_current_pads_dir();
// Display directory and space information
printf("Pads Directory: %s\n", pads_dir);
// Get filesystem space information
struct statvfs vfs_stat;
if (statvfs(pads_dir, &vfs_stat) == 0) {
uint64_t total_bytes = vfs_stat.f_blocks * vfs_stat.f_frsize;
uint64_t available_bytes = vfs_stat.f_bavail * vfs_stat.f_frsize;
uint64_t used_bytes = total_bytes - (vfs_stat.f_bfree * vfs_stat.f_frsize);
double total_gb = (double)total_bytes / (1000.0 * 1000.0 * 1000.0);
double available_gb = (double)available_bytes / (1000.0 * 1000.0 * 1000.0);
double used_gb = (double)used_bytes / (1000.0 * 1000.0 * 1000.0);
double used_percent = (double)used_bytes / total_bytes * 100.0;
printf("Drive Space: %.2f GB total, %.2f GB used (%.1f%%), %.2f GB available\n",
total_gb, used_gb, used_percent, available_gb);
}
printf("\n");
DIR* dir = opendir(pads_dir);
if (!dir) {
printf("Error: Cannot open pads directory %s\n", pads_dir);
@@ -619,25 +690,25 @@ int handle_pads_menu(void) {
read_state_offset(pads[pad_count].chksum, &used_bytes);
// Format total size
if (st.st_size < 1024) {
if (st.st_size < 1000) {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%luB", st.st_size);
} else if (st.st_size < 1024 * 1024) {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.1fKB", (double)st.st_size / 1024.0);
} else if (st.st_size < 1024 * 1024 * 1024) {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.1fMB", (double)st.st_size / (1024.0 * 1024.0));
} else if (st.st_size < 1000 * 1000) {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.1fKB", (double)st.st_size / 1000.0);
} else if (st.st_size < 1000 * 1000 * 1000) {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.1fMB", (double)st.st_size / (1000.0 * 1000.0));
} else {
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.2fGB", (double)st.st_size / (1024.0 * 1024.0 * 1024.0));
snprintf(pads[pad_count].size_str, sizeof(pads[pad_count].size_str), "%.2fGB", (double)st.st_size / (1000.0 * 1000.0 * 1000.0));
}
// Format used size
if (used_bytes < 1024) {
if (used_bytes < 1000) {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%luB", used_bytes);
} else if (used_bytes < 1024 * 1024) {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.1fKB", (double)used_bytes / 1024.0);
} else if (used_bytes < 1024 * 1024 * 1024) {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.1fMB", (double)used_bytes / (1024.0 * 1024.0));
} else if (used_bytes < 1000 * 1000) {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.1fKB", (double)used_bytes / 1000.0);
} else if (used_bytes < 1000 * 1000 * 1000) {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.1fMB", (double)used_bytes / (1000.0 * 1000.0));
} else {
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.2fGB", (double)used_bytes / (1024.0 * 1024.0 * 1024.0));
snprintf(pads[pad_count].used_str, sizeof(pads[pad_count].used_str), "%.2fGB", (double)used_bytes / (1000.0 * 1000.0 * 1000.0));
}
// Calculate percentage
@@ -949,9 +1020,9 @@ int handle_verify_pad(const char* chksum) {
printf("ChkSum: %s\n", chksum);
printf("File: %s\n", pad_filename);
double size_gb = (double)st.st_size / (1024.0 * 1024.0 * 1024.0);
double used_gb = (double)used_bytes / (1024.0 * 1024.0 * 1024.0);
double remaining_gb = (double)(st.st_size - used_bytes) / (1024.0 * 1024.0 * 1024.0);
double size_gb = (double)st.st_size / (1000.0 * 1000.0 * 1000.0);
double used_gb = (double)used_bytes / (1000.0 * 1000.0 * 1000.0);
double remaining_gb = (double)(st.st_size - used_bytes) / (1000.0 * 1000.0 * 1000.0);
printf("Total size: %.2f GB (%lu bytes)\n", size_gb, st.st_size);
printf("Used: %.2f GB (%lu bytes)\n", used_gb, used_bytes);
@@ -1017,7 +1088,7 @@ int handle_delete_pad(const char* chksum) {
uint64_t used_bytes;
read_state_offset(chksum, &used_bytes);
double size_gb = (double)st.st_size / (1024.0 * 1024.0 * 1024.0);
double size_gb = (double)st.st_size / (1000.0 * 1000.0 * 1000.0);
printf("\nPad to delete:\n");
printf("Checksum: %s\n", chksum);
printf("Size: %.2f GB\n", size_gb);
@@ -1205,7 +1276,7 @@ int handle_add_entropy_to_pad(const char* pad_chksum) {
target_bytes = (size_t)pad_stat.st_size;
printf("\nHardware RNG selected - will enhance entire pad with hardware entropy\n");
printf("Pad size: %.2f GB (%zu bytes)\n",
(double)target_bytes / (1024.0 * 1024.0 * 1024.0), target_bytes);
(double)target_bytes / (1000.0 * 1000.0 * 1000.0), target_bytes);
} else if (entropy_source == ENTROPY_SOURCE_FILE) {
// Special handling for file entropy - ask for file path first
char file_path[512];
@@ -1227,7 +1298,7 @@ int handle_add_entropy_to_pad(const char* pad_chksum) {
printf("\nFile vs Pad Size Analysis:\n");
printf(" Entropy file: %zu bytes\n", file_size);
printf(" Target pad: %.2f GB (%lu bytes)\n",
(double)pad_size / (1024.0 * 1024.0 * 1024.0), pad_size);
(double)pad_size / (1000.0 * 1000.0 * 1000.0), pad_size);
// Smart method selection based on file size vs pad size
if (file_size >= pad_size) {
@@ -1411,10 +1482,10 @@ int handle_add_entropy_to_pad(const char* pad_chksum) {
printf("✓ Device test successful!\n");
printf(" Test collected: %zu bytes in %.1f seconds\n", test_collected, test_time);
printf(" Speed: %.1f KB/s (%.1f MB/s)\n", bytes_per_second / 1024.0, bytes_per_second / (1024.0 * 1024.0));
printf(" Speed: %.1f KB/s (%.1f MB/s)\n", bytes_per_second / 1000.0, bytes_per_second / (1000.0 * 1000.0));
printf("\nPad enhancement estimate:\n");
printf(" Pad size: %.2f GB (%zu bytes)\n", (double)target_bytes / (1024.0 * 1024.0 * 1024.0), target_bytes);
printf(" Pad size: %.2f GB (%zu bytes)\n", (double)target_bytes / (1000.0 * 1000.0 * 1000.0), target_bytes);
if (estimated_hours >= 1.0) {
printf(" Estimated time: %.1f hours\n", estimated_hours);

View File

@@ -153,7 +153,7 @@ int collect_truerng_entropy_streaming_from_device(const hardware_rng_device_t* d
if (display_progress) {
printf("Streaming entropy from %s to pad...\n", device->friendly_name);
printf("Pad size: %.2f GB (%lu bytes)\n", (double)pad_size / (1024.0*1024.0*1024.0), pad_size);
printf("Pad size: %.2f GB (%lu bytes)\n", (double)pad_size / (1000.0*1000.0*1000.0), pad_size);
printf("Enhancing entire pad with hardware entropy\n");
}

View File

@@ -152,7 +152,7 @@ int handle_generate_menu(void) {
return 1;
}
double size_gb = (double)size / (1024.0 * 1024.0 * 1024.0);
double size_gb = (double)size / (1000.0 * 1000.0 * 1000.0);
printf("Generating %.2f GB pad...\n", size_gb);
printf("Note: Use 'Add entropy' in Pads menu to enhance randomness after creation.\n");

View File

@@ -519,13 +519,13 @@ uint64_t parse_size_string(const char* size_str) {
}
if (strcmp(unit, "K") == 0 || strcmp(unit, "KB") == 0) {
multiplier = 1024ULL;
multiplier = 1000ULL;
} else if (strcmp(unit, "M") == 0 || strcmp(unit, "MB") == 0) {
multiplier = 1024ULL * 1024ULL;
multiplier = 1000ULL * 1000ULL;
} else if (strcmp(unit, "G") == 0 || strcmp(unit, "GB") == 0) {
multiplier = 1024ULL * 1024ULL * 1024ULL;
multiplier = 1000ULL * 1000ULL * 1000ULL;
} else if (strcmp(unit, "T") == 0 || strcmp(unit, "TB") == 0) {
multiplier = 1024ULL * 1024ULL * 1024ULL * 1024ULL;
multiplier = 1000ULL * 1000ULL * 1000ULL * 1000ULL;
} else {
return 0; // Invalid unit
}

BIN
tests/test_chacha20_extended Executable file

Binary file not shown.

View File

@@ -0,0 +1,263 @@
/*
* test_chacha20_extended.c - Test ChaCha20 extended counter implementation
*
* This test verifies that the extended counter properly handles:
* 1. Counter overflow at 2^32 blocks (256GB boundary)
* 2. Correct keystream generation across the overflow boundary
* 3. No duplicate keystream blocks
*/
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include "../src/nostr_chacha20.h"
#define TEST_BLOCK_SIZE 64
#define BLOCKS_NEAR_OVERFLOW 10 // Test blocks around overflow point
// Test helper: Compare two blocks for equality
int blocks_equal(const uint8_t* block1, const uint8_t* block2, size_t len) {
return memcmp(block1, block2, len) == 0;
}
// Test 1: Verify extended counter handles overflow correctly
int test_counter_overflow() {
printf("Test 1: Counter overflow handling\n");
printf(" Testing counter transition from 0xFFFFFFFF to 0x00000000...\n");
uint8_t key[32];
uint8_t nonce[8];
uint8_t input[TEST_BLOCK_SIZE];
uint8_t output1[TEST_BLOCK_SIZE];
uint8_t output2[TEST_BLOCK_SIZE];
uint8_t output3[TEST_BLOCK_SIZE];
// Initialize test data
memset(key, 0xAA, 32);
memset(nonce, 0xBB, 8);
memset(input, 0, TEST_BLOCK_SIZE);
// Test at counter_low = 0xFFFFFFFE, counter_high = 0
uint32_t counter_low = 0xFFFFFFFE;
uint32_t counter_high = 0;
printf(" Block at counter_low=0xFFFFFFFE, counter_high=0...\n");
if (chacha20_encrypt_extended(key, counter_low, counter_high, nonce,
input, output1, TEST_BLOCK_SIZE) != 0) {
printf(" ❌ FAILED: Error at counter_low=0xFFFFFFFE\n");
return 1;
}
// Test at counter_low = 0xFFFFFFFF, counter_high = 0
counter_low = 0xFFFFFFFF;
printf(" Block at counter_low=0xFFFFFFFF, counter_high=0...\n");
if (chacha20_encrypt_extended(key, counter_low, counter_high, nonce,
input, output2, TEST_BLOCK_SIZE) != 0) {
printf(" ❌ FAILED: Error at counter_low=0xFFFFFFFF\n");
return 1;
}
// Test at counter_low = 0x00000000, counter_high = 1 (after overflow)
counter_low = 0x00000000;
counter_high = 1;
printf(" Block at counter_low=0x00000000, counter_high=1...\n");
if (chacha20_encrypt_extended(key, counter_low, counter_high, nonce,
input, output3, TEST_BLOCK_SIZE) != 0) {
printf(" ❌ FAILED: Error at counter_low=0x00000000, counter_high=1\n");
return 1;
}
// Verify all three blocks are different (no keystream reuse)
if (blocks_equal(output1, output2, TEST_BLOCK_SIZE)) {
printf(" ❌ FAILED: Blocks at 0xFFFFFFFE and 0xFFFFFFFF are identical!\n");
return 1;
}
if (blocks_equal(output2, output3, TEST_BLOCK_SIZE)) {
printf(" ❌ FAILED: Blocks at 0xFFFFFFFF,0 and 0x00000000,1 are identical!\n");
return 1;
}
if (blocks_equal(output1, output3, TEST_BLOCK_SIZE)) {
printf(" ❌ FAILED: Blocks at 0xFFFFFFFE,0 and 0x00000000,1 are identical!\n");
return 1;
}
printf(" ✓ All blocks are unique across overflow boundary\n");
printf(" ✓ PASSED\n\n");
return 0;
}
// Test 2: Simulate processing data that crosses 256GB boundary
int test_large_file_simulation() {
printf("Test 2: Large file simulation (256GB+ boundary)\n");
printf(" Simulating processing across 256GB boundary...\n");
uint8_t key[32];
uint8_t nonce[8];
uint8_t input[1024];
uint8_t output[1024];
// Initialize test data
memset(key, 0x55, 32);
memset(nonce, 0x77, 8);
for (int i = 0; i < 1024; i++) {
input[i] = i & 0xFF;
}
// Simulate being at 256GB - 512 bytes (just before overflow)
// 256GB = 2^32 blocks * 64 bytes = 274,877,906,944 bytes
// Block number at 256GB - 512 bytes = 2^32 - 8 blocks
uint32_t counter_low = 0xFFFFFFF8; // 2^32 - 8
uint32_t counter_high = 0;
printf(" Processing 1KB starting at block 0xFFFFFFF8 (256GB - 512 bytes)...\n");
// This should cross the overflow boundary
int result = chacha20_encrypt_extended(key, counter_low, counter_high, nonce,
input, output, 1024);
if (result != 0) {
printf(" ❌ FAILED: Error processing data across 256GB boundary\n");
return 1;
}
printf(" ✓ Successfully processed data across 256GB boundary\n");
printf(" ✓ PASSED\n\n");
return 0;
}
// Test 3: Verify extended vs standard ChaCha20 compatibility
int test_compatibility() {
printf("Test 3: Compatibility with standard ChaCha20\n");
printf(" Verifying extended mode matches standard mode when counter_high=0...\n");
uint8_t key[32];
uint8_t nonce_standard[12];
uint8_t nonce_reduced[8];
uint8_t input[TEST_BLOCK_SIZE];
uint8_t output_standard[TEST_BLOCK_SIZE];
uint8_t output_extended[TEST_BLOCK_SIZE];
// Initialize test data
memset(key, 0x33, 32);
memset(nonce_standard, 0x44, 12);
memcpy(nonce_reduced, nonce_standard + 4, 8); // Extract last 8 bytes
memset(input, 0, TEST_BLOCK_SIZE);
uint32_t counter = 42;
// Standard ChaCha20
if (chacha20_encrypt(key, counter, nonce_standard, input,
output_standard, TEST_BLOCK_SIZE) != 0) {
printf(" ❌ FAILED: Standard ChaCha20 error\n");
return 1;
}
// Extended ChaCha20 with counter_high=0 and matching nonce
// The extended version builds nonce as [counter_high][nonce_reduced]
// So we need to ensure the first 4 bytes of nonce_standard are 0
uint8_t nonce_standard_zero[12] = {0};
memcpy(nonce_standard_zero + 4, nonce_reduced, 8);
if (chacha20_encrypt(key, counter, nonce_standard_zero, input,
output_standard, TEST_BLOCK_SIZE) != 0) {
printf(" ❌ FAILED: Standard ChaCha20 error\n");
return 1;
}
if (chacha20_encrypt_extended(key, counter, 0, nonce_reduced, input,
output_extended, TEST_BLOCK_SIZE) != 0) {
printf(" ❌ FAILED: Extended ChaCha20 error\n");
return 1;
}
// Compare outputs
if (!blocks_equal(output_standard, output_extended, TEST_BLOCK_SIZE)) {
printf(" ❌ FAILED: Extended mode output differs from standard mode\n");
printf(" First 16 bytes of standard: ");
for (int i = 0; i < 16; i++) printf("%02x ", output_standard[i]);
printf("\n First 16 bytes of extended: ");
for (int i = 0; i < 16; i++) printf("%02x ", output_extended[i]);
printf("\n");
return 1;
}
printf(" ✓ Extended mode matches standard mode when counter_high=0\n");
printf(" ✓ PASSED\n\n");
return 0;
}
// Test 4: Stress test - verify no errors at extreme counter values
int test_extreme_values() {
printf("Test 4: Extreme counter values\n");
printf(" Testing at various extreme counter positions...\n");
uint8_t key[32];
uint8_t nonce[8];
uint8_t input[TEST_BLOCK_SIZE];
uint8_t output[TEST_BLOCK_SIZE];
memset(key, 0x99, 32);
memset(nonce, 0x66, 8);
memset(input, 0, TEST_BLOCK_SIZE);
// Test various extreme positions
struct {
uint32_t counter_low;
uint32_t counter_high;
const char* description;
} test_cases[] = {
{0x00000000, 0, "Start of first 256GB segment"},
{0xFFFFFFFF, 0, "End of first 256GB segment"},
{0x00000000, 1, "Start of second 256GB segment"},
{0xFFFFFFFF, 1, "End of second 256GB segment"},
{0x00000000, 0xFFFF, "Start of segment 65535"},
{0xFFFFFFFF, 0xFFFF, "End of segment 65535"},
};
for (size_t i = 0; i < sizeof(test_cases) / sizeof(test_cases[0]); i++) {
printf(" Testing: %s (0x%08X, 0x%08X)...\n",
test_cases[i].description,
test_cases[i].counter_low,
test_cases[i].counter_high);
if (chacha20_encrypt_extended(key, test_cases[i].counter_low,
test_cases[i].counter_high, nonce,
input, output, TEST_BLOCK_SIZE) != 0) {
printf(" ❌ FAILED at %s\n", test_cases[i].description);
return 1;
}
}
printf(" ✓ All extreme values handled correctly\n");
printf(" ✓ PASSED\n\n");
return 0;
}
int main() {
printf("=================================================================\n");
printf("ChaCha20 Extended Counter Test Suite\n");
printf("=================================================================\n\n");
int failures = 0;
failures += test_counter_overflow();
failures += test_large_file_simulation();
failures += test_compatibility();
failures += test_extreme_values();
printf("=================================================================\n");
if (failures == 0) {
printf("✓ ALL TESTS PASSED\n");
printf("=================================================================\n");
printf("\nThe extended counter implementation is working correctly.\n");
printf("It can now handle pads larger than 256GB without overflow errors.\n");
return 0;
} else {
printf("❌ %d TEST(S) FAILED\n", failures);
printf("=================================================================\n");
return 1;
}
}